Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Crit Rev Food Sci Nutr ; 62(14): 3817-3832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33406881

RESUMO

Hydrogels, polymeric network materials, are capable of swelling and holding the bulk of water in their three-dimensional structures upon swelling. In recent years, hydrogels have witnessed increased attention in food and biomedical applications. In this paper, the available literature related to the design concepts, types, functionalities, and applications of hydrogels with special emphasis on food applications was reviewed. Hydrogels from natural polymers are preferred over synthetic hydrogels. They are predominantly used in diverse food applications for example in encapsulation, drug delivery, packaging, and more recently for the fabrication of structured foods. Natural polymeric hydrogels offer immense benefits due to their extraordinary biocompatible nature. Hydrogels based on natural/edible polymers, for example, those from polysaccharides and proteins, can serve as prospective alternatives to synthetic polymer-based hydrogels. The utilization of hydrogels has so far been limited, despite their prospects to address various issues in the food industries. More research is needed to develop biomimetic hydrogels, which can imitate the biological characteristics in addition to the physicochemical properties of natural materials for different food applications.


Assuntos
Hidrogéis , Polímeros , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Polímeros/química , Polissacarídeos/química , Estudos Prospectivos
2.
Crit Rev Food Sci Nutr ; 62(3): 832-859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33054344

RESUMO

Rutin is one of the most common dietary polyphenols found in vegetables, fruits, and other plants. It is metabolized by the mammalian gut microbiota and absorbed from the intestines, and becomes bioavailable in the form of conjugated metabolites. Rutin exhibits a plethora of bioactive properties, making it an extremely promising phytochemical. Numerous studies demonstrate that rutin can act as a chemotherapeutic and chemopreventive agent, and its anticancer effects can be mediated through the suppression of cell proliferation, the induction of apoptosis or autophagy, and the hindering of angiogenesis and metastasis. Rutin has been found to modulate multiple molecular targets involved in carcinogenesis, such as cell cycle mediators, cellular kinases, inflammatory cytokines, transcription factors, drug transporters, and reactive oxygen species. This review summarizes the natural sources of rutin, its bioavailability, and in particular its potential use as an anticancer agent, with highlighting its anticancer mechanisms as well as molecular targets. Additionally, this review updates the anticancer potential of its analogs, nanoformulations, and metabolites, and discusses relevant safety issues. Overall, rutin is a promising natural dietary compound with promising anticancer potential and can be widely used in functional foods, dietary supplements, and pharmaceuticals for the prevention and management of cancer.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Rutina/uso terapêutico
3.
Compr Rev Food Sci Food Saf ; 20(2): 1120-1149, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33569884

RESUMO

Prolamins are a group of safe food additives that are biocompatible, biodegradable, and sustainable. Zein, gliadin, kafirin, and hordein are common prolamins that have been extensively studied, particularly as these form colloidal particles because of their amphiphilic properties. Prolamin-based binary/ternary complexes, which have stable physicochemical properties and superior functionality, are formed by combining prolamins with polysaccharides, polyphenols, water-soluble proteins, and surfactants. Although the combination of prolamins with other components has received attention, the relationship between the structural design of prolamin-based complexes and their functionalities remains uncertain. This review discusses the production methods of prolamin-based complexes, the factors influencing their structural characteristics, and their applications in the food industry. Further studies are needed to elucidate the structure-function relationships between prolamins and other biopolymers, as well as the toxicological effects of these complexes in food.


Assuntos
Glutens , Zeína , Gliadina , Prolaminas , Proteínas
4.
Compr Rev Food Sci Food Saf ; 19(6): 2955-2971, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337053

RESUMO

Polyunsaturated fatty acids (PUFAs) play an important role in promoting brain development, decreasing the incidence of cardiovascular diseases, and reducing inflammation. However, PUFAs are inherently unstable and susceptible to oxidative deterioration due to two or more double bonds in their structure. Delivery systems have been developed to provide effective encapsulation and protection for PUFAs, and finally fulfill their health benefits. Emulsion-based encapsulation is one of the most promising techniques for the delivery of PUFAs. The emulsion composition and structure, as well as the storage conditions are regarded as key factors to influence the stability of emulsions. To maximize the resistance of PUFAs in emulsions against oxidation, emulsion structure design has been particularly highlighted, and different methods for tailoring emulsion structure have been developed. The current work is focused on the careful design of emulsion structure to improve the oxidative stability of PUFAs. Different types of emulsions, including conventional emulsions, multilayer emulsions, gelled emulsions, and Pickering emulsions are introduced, and their protective effect for PUFAs are discussed. The major role of interfacial structure in emulsions is emphasized. The effects of emulsifiers and involved modification methods on the interfacial structure are presented to further improve the stability of PUFAs during storage.


Assuntos
Emulsões/química , Ácidos Graxos Insaturados/química , Oxirredução , Ácidos Graxos Insaturados/administração & dosagem , Armazenamento de Alimentos , Géis
5.
Compr Rev Food Sci Food Saf ; 19(4): 1835-1876, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337084

RESUMO

In recent years, the development and application of plant proteins have drawn increasing scientific and industrial interests. Pea (Pisum sativum L.) is an important source of high-quality vegetable protein in the human diet. Its protein components are generally considered hypoallergenic, and many studies have highlighted the health benefits associated with the consumption of pea protein. Pea protein and its hydrolysates (pea protein hydrolysates [PPH]) possess health benefits such as antioxidant, antihypertensive, and modulating intestinal bacteria activities, as well as various functional properties, including solubility, water- and oil-holding capacities, and emulsifying, foaming, and gelling properties. However, the application of pea protein in the food system is limited due to its poor functional performances. Several frequently applied modification methods, including physical, chemical, enzymatic, and combined treatments, have been used for pea protein to improve its functional properties and expand its food applications. To date, different applications of pea protein in the food system have been extensively studied, for example, encapsulation for bioactive ingredients, edible films, extruded products and substitution for cereal flours, fats, and animal proteins. This article reviews the current status of the knowledge regarding pea protein, focusing on its health benefits, functional properties, and structural modifications, and comprehensively summarizes its potential applications in the food industry.


Assuntos
Pisum sativum/química , Proteínas de Vegetais Comestíveis/química , Manipulação de Alimentos/métodos , Proteínas de Vegetais Comestíveis/farmacologia , Hidrolisados de Proteína/química
6.
J Sci Food Agric ; 99(2): 816-823, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30003541

RESUMO

BACKGROUND: Consumer demand for low-fat foods has been increasing as a result of attempts to reduce obesity and chronic diseases. Bovine heart was defatted using supercritical CO2 (SC-CO2 ) at different pressures together with solvent extraction to produce a protein-based functional ingredient for low-fat food products. Thermal and functional characteristics of control and defatted samples were compared. RESULTS: Supercritical CO2 treatment at high pressure results in more removal of fat, producing a protein-rich defatted bovine heart (DBH). The differential scanning calorimeter (DSC) thermograms and SDS-PAGE bands for SC-CO2 -treated DBHs were similar to those of the control sample, indicating high protein stability and better functionality. Hexane-treated DBH showed no major thermal peaks and very diffuse bands in SDS-PAGE, indicating denaturation of proteins during solvent extraction. No denaturation of proteins in SC-CO2 -treated DBHs resulted in significantly higher water/oil absorption capacities (3320.00 and 2630.00 g kg-1 , respectively), total soluble solids (822.20 and 208.71 g kg-1 at pH 3.5 and 6.5, respectively), foaming capacities (149.37%), and emulsion activity (66.89%) than the hexane-treated DBH. CONCLUSION: Supercritical CO2 treatment of DBH led to higher thermal stability and functional properties than the control and hexane-treated DBH. Defatted bovine heart using SC-CO2 can be a functional ingredient for various low-fat and high-protein food products for health-conscious consumers. © 2018 Society of Chemical Industry.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Gorduras/isolamento & purificação , Manipulação de Alimentos/métodos , Carne/análise , Animais , Dióxido de Carbono/química , Bovinos , Gorduras/análise , Coração , Miocárdio/química , Miocárdio/metabolismo
7.
Crit Rev Food Sci Nutr ; 56(13): 2223-30, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25745811

RESUMO

Anthocyanins are one of the six subgroups of large and widespread group of plant constituents known as flavonoids. These are responsible for the bright and attractive orange, red, purple, and blue colors of most fruits, vegetables, flowers and some cereal grains. More than 600 structurally distinct anthocyanins have been identified in nature. Earlier, anthocyanins were only known for their coloring properties but now interest in anthocyanin pigments has intensified because of their possible health benefits as dietary antioxidants, which help to prevent neuronal diseases, cardiovascular illnesses, cancer, diabetes, inflammation, and many such others diseases. Ability of anthocyanins to counter oxidants makes them atherosclerosis fighters. Therefore, anthocyanin-rich foods may help to boost overall health by offering an array of nutrients. However, the incorporation of anthocyanins into food and medical products is a challenging task due to their low stability toward environmental conditions during processing and storage. Encapsulation seems to be an efficient way to introduce such compounds into these products. Encapsulating agents act as a protector coat against ambient adverse conditions such as light, humidity, and oxygen. Encapsulated bioactive compounds are easier to handle and offer improved stability. The main objective of this review is to explore health benefits of anthocyanins and their extraction, characterization, encapsulation, and delivery.


Assuntos
Antocianinas/administração & dosagem , Dieta , Promoção da Saúde , Tecnologia Farmacêutica/métodos , Antocianinas/química , Antocianinas/isolamento & purificação , Antioxidantes , Disponibilidade Biológica , Estabilidade de Medicamentos , Grão Comestível/química , Manipulação de Alimentos , Conservação de Alimentos , Frutas/química , Humanos , Verduras/química
8.
Crit Rev Food Sci Nutr ; 56(16): 2617-27, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25629711

RESUMO

The health and wellness of human beings is largely dictated by the consumption of nutritious foods. Various studies have linked foods as helpful in combating a number of degenerative diseases; as such, a lot of research on functional attributes linked directly to the health benefits of various plant and animal foods have been witnessed in recent years. Although vast number of naturally occurring health-enhancing substances are of plant origin, there are a number of physiologically active components in animal products as well that deserve attention for their potential role in optimal health. Consumption of biologically active ingredients in fruits and vegetables has been linked to help combat diseases such as cancer, cardiovascular diseases, obesity, and gastrointestinal tract disorders. Lot of research is required to substantiate the potential health benefits of those foods for which the diet-health relationships are not sufficiently validated, and create a strong scientific knowledge base for proper application of naturally present foods in combating various diseases and disorders.


Assuntos
Suplementos Nutricionais , Alimento Funcional , Promoção da Saúde , Animais , Doenças Cardiovasculares/prevenção & controle , Laticínios , Peixes , Frutas , Gastroenteropatias/prevenção & controle , Humanos , Neoplasias/prevenção & controle , Obesidade/prevenção & controle , Plantas Comestíveis , Alimentos Marinhos , Terminologia como Assunto , Verduras , Vinho
9.
Food Chem ; 444: 138628, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38320335

RESUMO

The chemical compositions, intermolecular interactions, and functional properties of guar germ proteins (GGP) were investigated at different extraction pH (7 to 11). The protein efficiency ratio, essential amino acid index (46.53), predicted biological value (39.02), nutritional index (42.67), and protein purity (91.69 %) were found to be highest at pH 9. The in-vitro protein digestibility of GGP sample was highest at pH 11. From SDS-PAGE, the band intensity (<10 kDa) became thinner with an increase in extraction pH from 7 to 9 and then thicker. Meanwhile, smallest particle size and weaker ionic and hydrogen bonds were found at pH 11. The ß-sheet content was more dominating in GGP samples. Moreover, higher denaturation temperatures of GGP samples indicated that protein molecules had a compact tertiary structure. Furthermore, the GGP extracted at pH 7 showed better functional properties. The principal component analysis suggested that pH 9 was more suitable for isolating GGP.


Assuntos
Aminoácidos , Cyamopsis , Aminoácidos/análise , Cyamopsis/metabolismo , Proteínas , Aminoácidos Essenciais , Concentração de Íons de Hidrogênio
10.
J Food Sci ; 89(4): 2188-2201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369948

RESUMO

Guar seed flour (GSF) has a high amount of carbohydrates, proteins, phytochemicals, and anti-nutritional factors (ANFs), which limits its use. To address this issue, the current study was undertaken to understand the effect of microwave (MW) irradiation on ANFs, phytochemicals, in vitro protein digestibility (IVPD), and functional attributes of GSF at varying power density (Pd: 1-3 W/g) and duration (3-9 min). The ANFs were determined using a colorimetric assay and a Fourier transform infrared spectrum. At 3 Pd-9 min, the maximum reduction in ANFs (tannin, phytic acid, saponin, and trypsin inhibitor activity) was observed. Higher Pd and treatment duration increased antioxidant activity and total phenolic content, except for total flavonoid content. Furthermore, compared to the control sample (78.38%), the IVPD of the GSF samples increased to 3.28% (3 Pd-9 min). An increase in Pd and duration of MW treatment improved the thermal and pasting properties of GSF samples up to 2 Pd-9 min. Due to inter- and intramolecular hydrogen bonding degradation, the relative crystallinity of the 3 Pd-9 min treated GSF sample was 30.58%, which was lower than that of the control (40.08%). In MW-treated samples, SEM images revealed smaller clusters with rough and porous structures. However, no noticeable color (ΔE) changes were observed in MW-treated samples. Aside from water absorption capacity and water solubility index, MW treatment reduced oil absorption capacity, foaming capacity, and emulsifying capacity. As demonstrated by principal component analysis, MW irradiation with moderate Pd (2-3) was more effective in reducing ANFs, retaining nutritional contents, and improving the digestible properties of GSF, which could be a potential ingredient for developing gluten-free products.


Assuntos
Cyamopsis , Micro-Ondas , Farinha/análise , Sementes/química , Compostos Fitoquímicos/análise , Água/análise
11.
Food Res Int ; 168: 112790, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120236

RESUMO

The present study was carried out to investigate the effect of atmospheric cold plasma treatment on the nutritional, anti-nutritional, functional, morphological, and digestibility of guar seed (Cyamopsis tetragonoloba L.) flour. Here, guar seed flour was kept inside the plasma reactor for 5 to 20 min at different power levels (10 & 20 kV). The cold plasma treatment (CPT) significantly (p < 0.05) reduced the carbohydrate (46.87 - 36.81 %), protein (27.15 - 25.88 %), and increased the WAC (1.89 - 2.91 g/g), OAC (1.18 - 2.17 g/g), FC (113 - 186.17 %), and pasting properties of guar seed flour. High-intensity plasma-treated samples (20 kV-20 min) contained lesser tannin, phytic acid, and saponin with reduced the nutritional value. The FTIR spectrum suggested that functional group formation or destruction might have occurred in the plasma-treated samples. Additionally, the crystallinity is reduced with increasing applied voltage or duration. The SEM analysis reveals that CPT resulted in the formation of rough surfaces with highly porous structures. On the other hand, CPT significantly reduced the trypsin inhibitor activity and had a minor impact on in-vitro protein digestibility except for the 20 kV-20 min treated sample. In PCA analysis, 10 kV-15 min treated samples exhibited better nutritional value, functional, and pasting properties with maximum impact of anti-nutritional factors. From the results, it can be concluded that treatment duration rather than the applied voltage plays a significant role in preserving the nutritional content.


Assuntos
Cyamopsis , Gases em Plasma , Cyamopsis/química , Farinha/análise , Sementes/química , Valor Nutritivo
12.
Food Chem X ; 20: 100959, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144831

RESUMO

The use of non-conventional seed flour is of interest in obtaining healthy breakfast cereals. The research aimed to study the physico-functional, bioactive, microstructure, and thermal characteristics of breakfast cereals using scanning electron microscopy, X-ray diffractometry, and differential scanning calorimeter. The increase in feed moisture content (16 %) enhanced the bulk density (5.24 g/mL), water absorption index (7.76 g/g), total phenolic content (9.03 mg GAE/g), and antioxidant activity (30.36 %) having desirable expansion rate (2.84 mm), water solubility index (48 %), and color attributes. The microstructure showed dense inner structures with closed air cells in extruded flours. Extrusion treatment rearranged the crystalline structure from A-type to V-type by disrupting the granular structure of starch, reducing its crystallinity, and promoting the formation of an amylose-lipid complex network. Increasing conditioning moisture enhanced the degree of gelatinization (%), peak gelatinization temperature (Tp), and starch crystallinity (%) and reduced the gelatinization enthalpy (ΔHG) and gelatinization temperature ranges. The results reported in this study will help industries to develop innovative and novel food products containing functional ingredients.

13.
Front Nutr ; 9: 870819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464008

RESUMO

This study was aimed to use extrusion cooking as a pretreatment for non-conventional seeds (Indian horse chestnut flour) to blend them with whole grain flours (whole wheat flour, whole barley flour, and whole corn flour) for the development of a pregelatinized cereal bar (PCB). In this study, date paste (7.5-17.5%) and walnut grits (2.5-12.5%) were incorporated at varying levels to prepare PCB. The PCB was evaluated for its nutritional, color, textural (both three-point bending test and TPA), antioxidant activity, and sensory attributes. The flexural modulus, rupture stress, and fracture strain of PCB increased with the incorporation of a higher proportion of date paste. The protein and fiber content in PCB increased from 7.74 to 9.13% and 4.81 to 5.59% with the incorporation of walnut grits and date paste, respectively. The DPPH, total phenolic content, and water activity of PCB were determined, which progressively enhanced with increased levels of walnut grits and date paste. The correlation between sensory attributes and instrumental texture on PCB was also investigated. The correlation results showed a significant (p < 0.05) positive correlation between texture analysis and sensory hardness, springiness, adhesiveness, and negatively correlated to instrumental and sensory cohesiveness. For sensorial attributes, all PCB samples presented average scores of 7/10 and 4/5 for buying intention. Therefore, whole grain extrudates, date paste, and walnut grits can be efficiently used to develop PCB with improved nutritional, nutraceutical, and economic values.

14.
Int J Food Sci ; 2020: 8874872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354562

RESUMO

In this study, the chemical composition, colour analysis, and antioxidant properties of flour and bread were analysed. We also examined the rheological properties of dough and proximate, colour, textural, and organoleptic properties of amaranth wheat bread. Wheat flour was replaced by amaranth flour (AF) at 0-15% levels (100 : 0, 95 : 5, 90 : 10, and 85 : 15, respectively). AF supplementation increased the moisture (31.06 to 33.24%), ash (0.92 to 1.51%), protein (12.17 to 13.11%), fat (2.16 to 2.77%), and crude fibre content (1.11 to 1.72%) of the bread while the nitrogen-free extract and alkali water retention capacity decreased from 52.58 to 47.65% and 136.00 to 112.02%, respectively. The antioxidant activity evaluated by DPPH, FRAP, and total phenolic content was reduced with increased levels of AF. A significant impact on the physical properties like the weight of bread (increased from 474.00 to 489.30 g), height (went down from 80.00 to 74.33 cm), loaf volume (decreased from 1580.00 to 1518.30 cm3), and specific volume (reduced from 3.32 to 3.10 cm3 g-1) was observed with the replacement of wheat flour. Textural measurement depicted that hardness, chewiness, gumminess, springiness, and cohesiveness increased with the substitution of amaranth flour. Rheological parameters like complex viscosity, loss modulus, and storage modulus were also observed in all dough samples. Bread samples with 5%, 10%, and 15% of AF showed lower yellowness (b∗) and higher lightness (L∗) and redness (a∗) values for crust colour while lower L∗ and higher a∗ and b∗ values for crumb colour. The bread prepared by replacing 5% and 10% of AF is nutritionally as well as sensorially acceptable.

15.
Int J Biol Macromol ; 85: 460-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26778155

RESUMO

Starches isolated from two recently released rice cultivars (PR 121 and PR 116) grown in sub-tropical climates of Punjab, India were subjected to gamma irradiation at 0, 2, and 10 kGy doses using a Co(60) irradiator source. Physicochemical, thermal, pasting, and morphological properties were studied. Irradiation resulted in a significant decrease in apparent amylose content, swelling power and pasting properties. Carboxyl content and solubility increased with irradiation. The granule morphology was evaluated using scanning electron microscope, particle size analyzer and light microscope. Irradiation resulted in formation of small size granules. Granules were irregular and polyhedral in shape. The granule morphology and A-type X-ray diffraction pattern were not altered by irradiation.


Assuntos
Raios gama , Oryza/química , Amido/química , Amido/efeitos da radiação , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/ultraestrutura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA