RESUMO
The piriform cortex (PC) is located at the junction of the temporal and frontal lobes. It is involved physiologically in olfaction as well as memory and plays an important role in epilepsy. Its study at scale is held back by the absence of automatic segmentation methods on MRI. We devised a manual segmentation protocol for PC volumes, integrated those manually derived images into the Hammers Atlas Database (n = 30) and used an extensively validated method (multi-atlas propagation with enhanced registration, MAPER) for automatic PC segmentation. We applied automated PC volumetry to patients with unilateral temporal lobe epilepsy with hippocampal sclerosis (TLE; n = 174 including n = 58 controls) and to the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 151, of whom with mild cognitive impairment (MCI), n = 71; Alzheimer's disease (AD), n = 33; controls, n = 47). In controls, mean PC volume was 485 mm3 on the right and 461 mm3 on the left. Automatic and manual segmentations overlapped with a Jaccard coefficient (intersection/union) of ~0.5 and a mean absolute volume difference of ~22 mm3 in healthy controls, ~0.40/ ~28 mm3 in patients with TLE, and ~ 0.34/~29 mm3 in patients with AD. In patients with TLE, PC atrophy lateralised to the side of hippocampal sclerosis (p < .001). In patients with MCI and AD, PC volumes were lower than those of controls bilaterally (p < .001). Overall, we have validated automatic PC volumetry in healthy controls and two types of pathology. The novel finding of early atrophy of PC at the stage of MCI possibly adds a novel biomarker. PC volumetry can now be applied at scale.
Assuntos
Doença de Alzheimer , Epilepsia do Lobo Temporal , Córtex Piriforme , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/patologiaRESUMO
Rosemary (Rosmarinus officinalis L.) is a rich source of dietary bioactive compounds such as rosmarinic acid and carnosol with a large repertoire of pharmacological properties, including anti-inflammatory and neuroprotective activities. In the present study, we investigated rosemary as a potential new therapeutic agent for cognitive function and other symptoms of aging. In this present study, we have aimed to investigate the effects of oral administration of rosemary extract (RME) on learning and memory in the context of other biomarkers-related cognitive function and neurotransmitter levels in senescent accelerated prone 8 (SAMP8) mouse, a model of accelerating aging and Alzheimer's disease. The Morris water maze (MWM) test showed improved spatial learning and memory behavior in RME treated SAMP8 mouse. Moreover, RME decreased Aß42 and inflammatory cytokine levels and increased BDNF, Sirt1, and neurotransmitter levels in SAMP8 mouse. Whole-genome microarray analysis revealed that RME significantly increased gene expression related to oligodendrocyte differentiation, myelination, and ATP production in the hippocampus and decreased gene expression related to stress, neuroinflammation, and apoptosis. Also, in the SAMP8 hippocampus, RME significantly increased Olig1 and Olig2 expression. Altogether, our study is the first to report improvement of spatial learning and memory of RME, modulation of genes important for oligodendrogenesis, and Anti-neuroinflammatory effect by suppressing Aß42 levels in mouse brain and thus highlights the prospects of RME in the treatment of cognitive dysfunction and aging.