Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Genes Immun ; 21(5): 301-310, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32770079

RESUMO

Animals counter specific environmental challenges with a combination of broad and tailored host responses. One protein family enlisted in the innate immune response includes the saposin-like antimicrobial proteins. We investigated the expression of a Caenorhabditis elegans saposin-like gene, spp-9, in response to different stresses. spp-9 expression was detected in the intestine and six amphid neurons, including AWB and AWC. spp-9 expression is increased in response to starvation stress. In addition, we discovered pathogen-specific regulation of spp-9 that was not clearly demarcated by Gram nature of the bacterial challenge. Multiple molecular innate immune response pathways, including DBL-1/TGF-ß-like, insulin-like, and p38/MAPK, regulate expression of spp-9. Our results suggest spp-9 is involved in targeted responses to a variety of abiotic and bacterial challenges that are coordinated by multiple signaling pathways.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Imunidade Inata , Saposinas/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Sistema de Sinalização das MAP Quinases , Neuropeptídeos/metabolismo , Saposinas/genética , Estresse Fisiológico , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Dev Biol ; 371(1): 66-76, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22922164

RESUMO

Glypicans are multifunctional proteoglycans with regulatory roles in several intercellular signaling pathways. Here, we examine the functional requirements for glypican regulation of bone morphogenetic protein (BMP)-mediated body length in C. elegans. We provide evidence that two parts of C. elegans glypican LON-2 can independently inhibit BMP signaling in vivo: the N-terminal furin protease product and the C-terminal region containing heparan sulfate attachment sequences. While the C-terminal protease product is dispensable for LON-2 minimal core protein activity, it does affect the localization of LON-2. Cleavage of LON-2 into two parts at the conserved furin protease site is not required for LON-2 to inhibit BMP-like signaling. The glycosyl-phosphatidylinositol (GPI) membrane anchor is also not absolutely required for LON-2 activity. Finally, we show that an RGD protein-protein interaction motif in the LON-2 N-terminal domain is necessary for LON-2 core protein activity, suggesting that LON-2 inhibits BMP signaling by acting as a scaffold for BMP and an RGD-binding protein.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Glipicanas/metabolismo , Transdução de Sinais/fisiologia , Animais , Tamanho Corporal/genética , Tamanho Corporal/fisiologia , Pesos e Medidas Corporais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/farmacologia , Glicosilfosfatidilinositóis/metabolismo , Glipicanas/farmacologia , Microscopia Confocal , Estrutura Terciária de Proteína/fisiologia , Transdução de Sinais/efeitos dos fármacos
3.
PLoS Genet ; 6(5): e1000963, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20502686

RESUMO

Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP-like receptor signaling. SMA-10 acts genetically in a BMP-like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Membrana/metabolismo , Transdução de Sinais , Alelos , Animais , Sequência Conservada
4.
Elife ; 122023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750680

RESUMO

Generating specific, robust protective responses to different bacteria is vital for animal survival. Here, we address the role of transforming growth factor ß (TGF-ß) member DBL-1 in regulating signature host defense responses in Caenorhabditis elegans to human opportunistic Gram-negative and Gram-positive pathogens. Canonical DBL-1 signaling is required to suppress avoidance behavior in response to Gram-negative, but not Gram-positive bacteria. We propose that in the absence of DBL-1, animals perceive some bacteria as more harmful. Animals activate DBL-1 pathway activity in response to Gram-negative bacteria and strongly repress it in response to select Gram-positive bacteria, demonstrating bacteria-responsive regulation of DBL-1 signaling. DBL-1 signaling differentially regulates expression of target innate immunity genes depending on the bacterial exposure. These findings highlight a central role for TGF-ß in tailoring a suite of bacteria-specific host defenses.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Animais , Humanos , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuropeptídeos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Bactérias Gram-Positivas/metabolismo
5.
J Vis Exp ; (184)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35758710

RESUMO

Genomic DNA extraction from single or a few Caenorhabditis elegans has many downstream applications, including PCR for genotyping lines, cloning, and sequencing. The traditional proteinase K-based methods for genomic DNA extraction from C. elegans take several hours. Commercial extraction kits that effectively break open the C. elegans cuticle and extract genomic DNA are limited. An easy, faster (~15 min), and cost-efficient method of extracting C. elegans genomic DNA that works well for classroom and research applications is reported here. This DNA extraction method is optimized to use single or a few late-larval (L4) or adult nematodes as starting material for obtaining a reliable template to perform PCR. The results indicate that the DNA quality is suitable for amplifying gene targets of different sizes by PCR, permitting genotyping of single or a few animals even at dilutions to one-fiftieth of the genomic DNA from a single adult per reaction. The reported protocols can be reliably used to quickly produce DNA template from a single or a small sample of C. elegans for PCR-based applications.


Assuntos
Caenorhabditis elegans , DNA , Animais , Caenorhabditis elegans/genética , Genoma , Genômica , Reação em Cadeia da Polimerase
6.
Aging Cell ; 21(9): e13693, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35977034

RESUMO

Aging is a complex and highly regulated process of interwoven signaling mechanisms. As an ancient transcriptional regulator of thermal adaptation and protein homeostasis, the Heat Shock Factor, HSF-1, has evolved functions within the nervous system to control age progression; however, the molecular details and signaling dynamics by which HSF-1 modulates age across tissues remain unclear. Herein, we report a nonautonomous mode of age regulation by HSF-1 in the Caenorhabditis elegans nervous system that works through the bone morphogenic protein, BMP, signaling pathway to modulate membrane trafficking in peripheral tissues. In particular, HSF-1 represses the expression of the neuron-specific BMP ligand, DBL-1, and initiates a complementary negative feedback loop within the intestine. By reducing receipt of DBL-1 in the periphery, the SMAD transcriptional coactivator, SMA-3, represses the expression of critical membrane trafficking regulators including Rab GTPases involved in early (RAB-5), late (RAB-7), and recycling (RAB-11.1) endosomal dynamics and the BMP receptor binding protein, SMA-10. This reduces cell surface residency and steady-state levels of the type I BMP receptor, SMA-6, in the intestine and further dampens signal transmission to the periphery. Thus, the ability of HSF-1 to coordinate BMP signaling along the gut-brain axis is an important determinate in age progression.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Resposta ao Choque Térmico , Longevidade/fisiologia , Neurônios/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
BMC Dev Biol ; 10: 61, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20529267

RESUMO

BACKGROUND: Bone morphogenetic proteins (BMPs) are members of the conserved transforming growth factor beta (TGFbeta superfamily, and play many developmental and homeostatic roles. In C. elegans, a BMP-like pathway, the DBL-1 pathway, controls body size and is involved in innate immunity. How these functions are carried out, though, and what most of the downstream targets of this pathway are, remain unknown. RESULTS: We performed a microarray analysis and compared expression profiles of animals lacking the SMA-6 DBL-1 receptor, which decreases pathway signaling, with animals that overexpress DBL-1 ligand, which increases pathway signaling. Consistent with a role for DBL-1 in control of body size, we find positive regulation by DBL-1 of genes involved in physical structure, protein synthesis and degradation, and metabolism. However, cell cycle genes were mostly absent from our results. We also identified genes in a hedgehog-related pathway, which may comprise a secondary signaling pathway downstream of DBL-1 that controls body size. In addition, DBL-1 signaling up-regulates pro-innate immunity genes. We identified a reporter for DBL-1 signaling, which is normally repressed but is up-regulated when DBL-1 signaling is reduced. CONCLUSIONS: Our results indicate that body size in C. elegans is controlled in part by regulation of metabolic processes as well as protein synthesis and degradation. This supports the growing body of evidence that suggests cell size is linked to metabolism. Furthermore, this study discovered a possible role for hedgehog-related pathways in transmitting the BMP-like signal from the hypodermis, where the core DBL-1 pathway components are required, to other tissues in the animal. We also identified the up-regulation of genes involved in innate immunity, clarifying the role of DBL-1 in innate immunity. One of the highly regulated genes is expressed at very low levels in wild-type animals, but is strongly up-regulated in Sma/Mab mutants, making it a useful reporter for DBL-1/BMP-like signaling in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Animais , Tamanho Corporal , Caenorhabditis elegans/imunologia , Perfilação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Imunidade Inata
8.
Curr Biol ; 17(2): 159-64, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17240342

RESUMO

Bone morphogenetic protein (BMP) pathways are required for a wide variety of developmental and homeostatic decisions, and mutations in signaling components are associated with several diseases. An important aspect of BMP control is the extracellular regulation of these pathways. We show that LON-2 negatively regulates a BMP-like signaling pathway that controls body length in C. elegans. lon-2 acts genetically upstream of the BMP-like gene dbl-1, and loss of lon-2 function results in animals that are longer than normal. LON-2 is a conserved member of the glypican family of heparan sulfate proteoglycans, a family with several members known to regulate growth-factor signaling in many organisms. LON-2 is functionally conserved because the Drosophila glypican gene dally rescues the lon-2(lf) body-size defect. We show that the LON-2 protein binds BMP2 in vitro, and a mutant variation of LON-2 found in lon-2(e2140) animals diminishes this interaction. We propose that LON-2 binding to DBL-1 negatively regulates this pathway in C. elegans by attenuating ligand-receptor interactions. This is the first report of a glypican directly interacting with a growth-factor pathway in C. elegans and provides a mechanistic model for glypican regulation of growth-factor pathways.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Glipicanas/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Drosophila/genética , Glipicanas/genética , Glipicanas/metabolismo , Glicoproteínas de Membrana/genética , Neuropeptídeos/metabolismo , Proteoglicanas/genética , Tela Subcutânea/crescimento & desenvolvimento , Fator de Crescimento Transformador beta/metabolismo
9.
Mol Biol Cell ; 31(8): 825-832, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049594

RESUMO

Cellular responsiveness to environment, including changes in extracellular matrix (ECM), is critical for normal processes such as development and wound healing, but can go awry, as in oncogenesis and fibrosis. One type of molecular pathway contributing to this responsiveness is the BMP signaling pathway. Owing to their broad and potent functions, BMPs and their pathways are regulated at multiple levels. In Caenorhabditis elegans, the BMP ligand DBL-1 is a regulator of body size. We previously showed that DBL-1/BMP signaling determines body size through transcriptional regulation of cuticle collagen genes. We now identify feedback regulation of DBL-1/BMP through analysis of four DBL-1-regulated collagen genes. Inactivation of any of these genes reduces DBL-1/BMP signaling, measured by a pathway activity reporter. Furthermore, depletion of these collagens reduces GFP::DBL-1 fluorescence and acts unexpectedly at the level of dbl-1 transcription. We conclude that cuticle, a specialized ECM, impinges on DBL-1/BMP expression and signaling. Interestingly, the feedback regulation of DBL-1/BMP signaling by collagens is likely to be contact independent due to physical separation of the cuticle from DBL-1-expressing cells in the ventral nerve cord. Our results provide an entry point into a novel regulatory mechanism for BMP signaling, with broader implications for mechanical regulation of gene expression.


Assuntos
Estruturas Animais/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Colágeno/fisiologia , Neuropeptídeos/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Colágeno/biossíntese , Colágeno/genética , Retroalimentação Fisiológica , Genes Reporter , Interferência de RNA , Proteínas Smad/metabolismo , Transcrição Gênica
10.
Mol Biol Cell ; 30(26): 3151-3160, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31693440

RESUMO

Bone morphogenetic protein (BMP) signaling pathways control many developmental and homeostatic processes, including cell size and extracellular matrix remodeling. An understanding of how this pathway itself is controlled remains incomplete. To identify novel regulators of BMP signaling, we performed a forward genetic screen in Caenorhabditis elegans for genes involved in body size regulation, a trait under the control of BMP member DBL-1. We isolated mutations that suppress the long phenotype of lon-2, a gene that encodes a negative regulator that sequesters DBL-1. This screen was effective because we isolated alleles of several core components of the DBL-1 pathway, demonstrating the efficacy of the screen. We found additional alleles of previously identified but uncloned body size genes. Our screen also identified widespread involvement of extracellular matrix proteins in DBL-1 regulation of body size. We characterized interactions between the DBL-1 pathway and extracellular matrix and other genes that affect body morphology. We discovered that loss of some of these genes affects the DBL-1 pathway, and we provide evidence that DBL-1 signaling affects many molecular and cellular processes associated with body size. We propose a model in which multiple body size factors are controlled by signaling through the DBL-1 pathway and by DBL-1-independent processes.


Assuntos
Tamanho Corporal/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Neuropeptídeos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glipicanas/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA