Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Microbiol ; 113(5): 951-963, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31960524

RESUMO

Ribosomes are absolutely essential for growth but are, moreover, energetically costly to produce. Therefore, it is important to adjust the cellular ribosome levels according to the environmental conditions in order to obtain the highest possible growth rate while avoiding energy wastage on excess ribosome biosynthesis. Here we show, by three different methods, that the ribosomal RNA content of Escherichia coli is downregulated within minutes of the removal of an essential nutrient from the growth medium, or after transcription initiation is inhibited. The kinetics of the ribosomal RNA reduction vary depending on which nutrient the cells are starved for. The number of ribosomes per OD unit of cells is roughly halved after 80 min of starvation for isoleucine or phosphate, while the ribosome reduction is less extensive when the cells are starved for glucose. Collectively, the results presented here support the simple model proposed previously, which identifies the inactive ribosomal subunits as the substrates for degradation, since the most substantial rRNA degradation is observed under the starvation conditions that most directly affect the protein synthesis.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , RNA Bacteriano/química , RNA Ribossômico/química , Aminoácidos/metabolismo , Carbono/metabolismo , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Interação Gene-Ambiente , Cinética , Fosfatos/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , Ribossomos/genética , Ribossomos/metabolismo
2.
Mol Cell ; 51(2): 265-72, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23830618

RESUMO

Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in a manner that depended on the formation of acetyl-phosphate (AcP) through glycolysis. Mutant cells unable to produce AcP had significantly reduced acetylation levels, while mutant cells unable to convert AcP to acetate had significantly elevated acetylation levels. We showed that AcP can chemically acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low level and is dynamically affected by metabolism and cell proliferation in a global, uniform manner.


Assuntos
Acetatos/metabolismo , Proliferação de Células , Escherichia coli/metabolismo , Lisina/química , Organofosfatos/metabolismo , Acetilação , Células Cultivadas , Cromatografia Líquida , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Glicólise , Lisina/metabolismo , Mutação/genética , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
3.
J Biol Chem ; 288(29): 21055-21064, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23749992

RESUMO

The alarmone guanosine tetraphosphate (ppGpp) acts as both a positive and a negative regulator of gene expression in the presence of DksA, but the underlying mechanisms of this differential control are unclear. Here, using uspA hybrid promoters, we show that an AT-rich discriminator region is crucial for positive control by ppGpp/DksA. The AT-rich discriminator makes the RNA polymerase-promoter complex extremely stable and therefore easily saturated with RNA polymerase. A more efficient transcription is achieved when the RNA polymerase-promoter complex is destabilized with ppGpp/DksA. We found that exchanging the AT-rich discriminator of uspA with the GC-rich rrnB-P1 discriminator made the uspA promoter negatively regulated by ppGpp/DksA both in vivo and in vitro. In addition, the GC-rich discriminator destabilized the RNA polymerase-promoter complex, and the effect of ppGpp/DksA on the kinetic properties of the promoter was reversed. We propose that the transcription initiation rate from promoters with GC-rich discriminators, in contrast to the uspA-promoter, is not limited by the stability of the open complex. The findings are discussed in view of models for both direct and indirect effects of ppGpp/DksA on transcriptional trade-offs.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/farmacologia , Regiões Promotoras Genéticas , Transcrição Gênica , Sequência Rica em At/genética , Composição de Bases/genética , Sequência de Bases , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Genes Bacterianos/genética , Cinética , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética
4.
EMBO J ; 28(15): 2209-19, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19574956

RESUMO

Nutritionally induced changes in RNA polymerase availability have been hypothesized to be an evolutionary primeval mechanism for regulation of gene expression and several contrasting models have been proposed to explain how such 'passive' regulation might occur. We demonstrate here that ectopically elevating Escherichia coli RNA polymerase (Esigma(70)) levels causes an increased expression and promoter occupancy of ribosomal genes at the expense of stress-defense genes and amino acid biosynthetic operons. Phenotypically, cells overproducing Esigma(70) favours growth and reproduction at the expense of motility and damage protection; a response reminiscent of cells with no or diminished levels of the alarmone guanosine tetraphosphate (ppGpp). Consistently, we show that cells lacking ppGpp displayed markedly elevated levels of free Esigma(70) compared with wild-type cells and that the repression of ribosomal RNA expression and reduced growth rate of mutants with constitutively elevated levels of ppGpp can be suppressed by overproducing Esigma(70). We conclude that ppGpp modulates the levels of free Esigma(70) and that this is an integral part of the alarmone's means of regulating a trade-off between growth and maintenance.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/metabolismo , Fator sigma/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , RNA Ribossômico/biossíntese
5.
mSphere ; 7(3): e0100621, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35440180

RESUMO

The stationary phase is the general term for the state a bacterial culture reaches when no further increase in cell mass occurs due to exhaustion of nutrients in the growth medium. Depending on the type of nutrient that is first depleted, the metabolic state of the stationary phase cells may vary greatly, and the subsistence strategies that best support cell survival may differ. As ribosomes play a central role in bacterial growth and energy expenditure, ribosome preservation is a key element of such strategies. To investigate the degree of ribosome preservation during long-term starvation, we compared the dynamics of rRNA levels of carbon-starved and phosphorus-starved Escherichia coli cultures for up to 28 days. The starved cultures' contents of full-length 16S and 23S rRNA decreased as the starvation proceeded in both cases, and phosphorus starvation resulted in much more rapid rRNA degradation than carbon starvation. Bacterial survival and regrowth kinetics were also quantified. Upon replenishment of the nutrient in question, carbon-starved cells resumed growth faster than cells starved for phosphate for the equivalent amount of time, and for both conditions, the lag time increased with the starvation time. While these results are in accordance with the hypothesis that cells with a larger ribosome pool recover more readily upon replenishment of nutrients, we also observed that the lag time kept increasing with increasing starvation time, also when the amount of rRNA per viable cell remained constant, highlighting that lag time is not a simple function of ribosome content under long-term starvation conditions. IMPORTANCE The exponential growth of bacterial populations is punctuated by long or short periods of starvation lasting from the point of nutrient exhaustion until nutrients are replenished. To understand the consequences of long-term starvation for Escherichia coli cells, we performed month-long carbon and phosphorus starvation experiments and measured three key phenotypes of the cultures, namely, the survival of the cells, the time needed for them to resume growth after nutrient replenishment, and the levels of intact rRNA preserved in the cultures. The starved cultures' concentration of rRNA dropped with starvation time, as did cell survival, while the lag time needed for regrowth increased. While all three phenotypes were more severely affected during starvation for phosphorus than for carbon, our results demonstrate that neither survival nor lag time is correlated with ribosome content in a straightforward manner.


Assuntos
Carbono , Fosfatos , Carbono/metabolismo , Escherichia coli/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , RNA Ribossômico , Ribossomos/metabolismo
6.
Front Genet ; 11: 144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211022

RESUMO

Escherichia coli cells respond to a period of famine by globally reorganizing their gene expression. The changes are known as the stringent response, which is orchestrated by the alarmone ppGpp that binds directly to RNA polymerase. The resulting changes in gene expression are particularly well studied in the case of amino acid starvation. We used deep RNA sequencing in combination with spike-in cells to measure global changes in the transcriptome after valine-induced isoleucine starvation of a standard E. coli K12 strain. Owing to the whole-cell spike-in method that eliminates variations in RNA extraction efficiency between samples, we show that ribosomal RNA levels are reduced during isoleucine starvation and we quantify how the change in cellular RNA content affects estimates of gene regulation. Specifically, we show that standard data normalization relying on sample sequencing depth underestimates the number of down-regulated genes in the stringent response and overestimates the number of up-regulated genes by approximately 40%. The whole-cell spike-in method also made it possible to quantify how rapidly the pool of total messenger RNA (mRNA) decreases upon amino acid starvation. A principal component analysis showed that the first two components together described 69% of the variability of the data, underlining that large and highly coordinated regulons are at play in the stringent response. The induction of starvation by sudden addition of high valine concentrations provoked prominent regulatory responses outside of the expected ppGpp, RpoS, and Lrp regulons. This underlines the notion that with the high resolution possible in deep RNA sequencing analysis, any different starvation method (e.g., nitrogen-deprivation, removal of an amino acid from an auxotroph strain, or valine addition to E. coli K12 strains) will produce measurable variations in the stress response produced by the cells to cope with the specific treatment.

7.
J Bacteriol ; 189(14): 5193-202, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17496080

RESUMO

The recent discovery that the protein DksA acts as a coregulator of genes controlled by ppGpp led us to investigate the similarities and differences between the relaxed phenotype of a ppGpp-deficient mutant and the phenotype of a strain lacking DksA. We demonstrate that the absence of DksA and ppGpp has similar effects on many of the observed phenotypes but that DksA and ppGpp also have independent and sometimes opposing roles in the cell. Specifically, we show that overexpression of DksA can compensate for the loss of ppGpp with respect to transcription of the promoters P(uspA), P(livJ), and P(rrnBP1) as well as amino acid auxotrophy, cell-cell aggregation, motility, filamentation, and stationary phase morphology, suggesting that DksA can function without ppGpp in regulating gene expression. In addition, ppGpp and DksA have opposing effects on adhesion. In the course of our analysis, we also discovered new features of the relaxed mutant, namely, defects in cell-cell aggregation and motility.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Guanosina Tetrafosfato/metabolismo , Aminoácidos/metabolismo , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Western Blotting , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/fisiologia , Microscopia Eletrônica de Varredura , Modelos Biológicos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA