Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051369

RESUMO

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Assuntos
Microbioma Gastrointestinal/genética , Genes Bacterianos , Animais , Ácidos e Sais Biliares/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana , Resistência Microbiana a Medicamentos/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Técnicas de Transferência de Genes , Vida Livre de Germes , Inflamação/patologia , Intestinos/patologia , Masculino , Metaboloma/genética , Metagenômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Insercional/genética , Mutação/genética , RNA Ribossômico 16S/genética , Transcrição Gênica
2.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36240781

RESUMO

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Nociceptores/fisiologia , Substância P , Disbiose , Inflamação
3.
Nat Immunol ; 24(11): 1879-1889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872315

RESUMO

Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.


Assuntos
COVID-19 , Micobioma , Humanos , Animais , Camundongos , Antifúngicos , Disbiose , Neutrófilos , Candida albicans , Imunoglobulina G
4.
Immunity ; 57(1): 14-27, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38198849

RESUMO

Nutrition profoundly shapes immunity and inflammation across the lifespan of mammals, from pre- and post-natal periods to later life. Emerging insights into diet-microbiota interactions indicate that nutrition has a dominant influence on the composition-and metabolic output-of the intestinal microbiota, which in turn has major consequences for host immunity and inflammation. Here, we discuss recent findings that support the concept that dietary effects on microbiota-derived metabolites potently alter immune responses in health and disease. We discuss how specific dietary components and metabolites can be either pro-inflammatory or anti-inflammatory in a context- and tissue-dependent manner during infection, chronic inflammation, and cancer. Together, these studies emphasize the influence of diet-microbiota crosstalk on immune regulation that will have a significant impact on precision nutrition approaches and therapeutic interventions for managing inflammation, infection, and cancer immunotherapy.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Animais , Inflamação , Reações Cruzadas , Neoplasias/terapia , Mamíferos
5.
Cell ; 168(3): 517-526.e18, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111075

RESUMO

The gut microbiota modulate host biology in numerous ways, but little is known about the molecular mediators of these interactions. Previously, we found a widely distributed family of nonribosomal peptide synthetase gene clusters in gut bacteria. Here, by expressing a subset of these clusters in Escherichia coli or Bacillus subtilis, we show that they encode pyrazinones and dihydropyrazinones. At least one of the 47 clusters is present in 88% of the National Institutes of Health Human Microbiome Project (NIH HMP) stool samples, and they are transcribed under conditions of host colonization. We present evidence that the active form of these molecules is the initially released peptide aldehyde, which bears potent protease inhibitory activity and selectively targets a subset of cathepsins in human cell proteomes. Our findings show that an approach combining bioinformatics, synthetic biology, and heterologous gene cluster expression can rapidly expand our knowledge of the metabolic potential of the microbiota while avoiding the challenges of cultivating fastidious commensals.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Microbiota , Peptídeo Sintases/metabolismo , Pirazinas/metabolismo , Animais , Bacillus subtilis/genética , Bactérias/classificação , Bactérias/genética , Escherichia coli/genética , Fezes/microbiologia , Humanos , Peptídeo Sintases/genética , Filogenia
6.
Nature ; 611(7936): 578-584, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323778

RESUMO

Dietary fibres can exert beneficial anti-inflammatory effects through microbially fermented short-chain fatty acid metabolites<sup>1,2</sup>, although the immunoregulatory roles of most fibre diets and their microbiota-derived metabolites remain poorly defined. Here, using microbial sequencing and untargeted metabolomics, we show that a diet of inulin fibre alters the composition of the mouse microbiota and the levels of microbiota-derived metabolites, notably bile acids. This metabolomic shift is associated with type 2 inflammation in the intestine and lungs, characterized by IL-33 production, activation of group 2 innate lymphoid cells and eosinophilia. Delivery of cholic acid mimics inulin-induced type 2 inflammation, whereas deletion of the bile acid receptor farnesoid X receptor diminishes the effects of inulin. The effects of inulin are microbiota dependent and were reproduced in mice colonized with human-derived microbiota. Furthermore, genetic deletion of a bile-acid-metabolizing enzyme in one bacterial species abolishes the ability of inulin to trigger type 2 inflammation. Finally, we demonstrate that inulin enhances allergen- and helminth-induced type 2 inflammation. Taken together, these data reveal that dietary inulin fibre triggers microbiota-derived cholic acid and type 2 inflammation at barrier surfaces with implications for understanding the pathophysiology of allergic inflammation, tissue protection and host defence.


Assuntos
Ácidos e Sais Biliares , Fibras na Dieta , Microbioma Gastrointestinal , Inflamação , Inulina , Animais , Humanos , Camundongos , Ácidos e Sais Biliares/metabolismo , Ácido Cólico/farmacologia , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Imunidade Inata , Inflamação/induzido quimicamente , Inflamação/classificação , Inflamação/patologia , Inulina/farmacologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Metabolômica , Pulmão/efeitos dos fármacos , Pulmão/patologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Interleucina-33/metabolismo , Eosinófilos/citologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia
7.
Nature ; 581(7809): 475-479, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461639

RESUMO

Intestinal health relies on the immunosuppressive activity of CD4+ regulatory T (Treg) cells1. Expression of the transcription factor Foxp3 defines this lineage, and can be induced extrathymically by dietary or commensal-derived antigens in a process assisted by a Foxp3 enhancer known as conserved non-coding sequence 1 (CNS1)2-4. Products of microbial fermentation including butyrate facilitate the generation of peripherally induced Treg (pTreg) cells5-7, indicating that metabolites shape the composition of the colonic immune cell population. In addition to dietary components, bacteria modify host-derived molecules, generating a number of biologically active substances. This is epitomized by the bacterial transformation of bile acids, which creates a complex pool of steroids8 with a range of physiological functions9. Here we screened the major species of deconjugated bile acids for their ability to potentiate the differentiation of pTreg cells. We found that the secondary bile acid 3ß-hydroxydeoxycholic acid (isoDCA) increased Foxp3 induction by acting on dendritic cells (DCs) to diminish their immunostimulatory properties. Ablating one receptor, the farnesoid X receptor, in DCs enhanced the generation of Treg cells and imposed a transcriptional profile similar to that induced by isoDCA, suggesting an interaction between this bile acid and nuclear receptor. To investigate isoDCA in vivo, we took a synthetic biology approach and designed minimal microbial consortia containing engineered Bacteroides strains. IsoDCA-producing consortia increased the number of colonic RORγt-expressing Treg cells in a CNS1-dependent manner, suggesting enhanced extrathymic differentiation.


Assuntos
Bactérias/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Sequência de Aminoácidos , Animais , Bacteroides/metabolismo , Colo/microbiologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Fermentação , Microbioma Gastrointestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consórcios Microbianos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
8.
Gastroenterology ; 162(1): 166-178, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606847

RESUMO

BACKGROUND & AIMS: Fecal microbiota transplantation (FMT) is an emerging treatment modality for ulcerative colitis (UC). Several randomized controlled trials have shown efficacy for FMT in the treatment of UC, but a better understanding of the transferable microbiota and their immune impact is needed to develop more efficient microbiome-based therapies for UC. METHODS: Metagenomic analysis and strain tracking was performed on 60 donor and recipient samples receiving FMT for active UC. Sorting and sequencing of immunoglobulin (Ig) A-coated microbiota (called IgA-seq) was used to define immune-reactive microbiota. Colonization of germ-free or genetically engineered mice with patient-derived strains was performed to determine the mechanism of microbial impact on intestinal immunity. RESULTS: Metagenomic analysis defined a core set of donor-derived transferable bacterial strains in UC subjects achieving clinical response, which predicted response in an independent trial of FMT for UC. IgA-seq of FMT recipient samples and gnotobiotic mice colonized with donor microbiota identified Odoribacter splanchnicus as a transferable strain shaping mucosal immunity, which correlated with clinical response and the induction of mucosal regulatory T cells. Colonization of mice with O splanchnicus led to an increase in Foxp3+/RORγt+ regulatory T cells, induction of interleukin (IL) 10, and production of short chain fatty acids, all of which were required for O splanchnicus to limit colitis in mouse models. CONCLUSIONS: This work provides the first evidence of transferable, donor-derived strains that correlate with clinical response to FMT in UC and reveals O splanchnicus as a key component promoting both metabolic and immune cell protection from colitis. These mechanistic features will help enable strategies to enhance the efficacy of microbial therapy for UC. Clinicaltrials.gov ID NCT02516384.


Assuntos
Bacteroidetes/imunologia , Colite/terapia , Colo/microbiologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Imunoglobulina A/imunologia , Mucosa Intestinal/microbiologia , Animais , Bacteroidetes/genética , Bacteroidetes/metabolismo , Ensaios Clínicos como Assunto , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Colo/imunologia , Colo/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Vida Livre de Germes , Humanos , Imunidade nas Mucosas , Imunoglobulina A/genética , Imunoglobulina A/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Linfócitos Intraepiteliais/microbiologia , Metagenoma , Metagenômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/microbiologia , Resultado do Tratamento
9.
Circ Res ; 123(10): 1164-1176, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30359185

RESUMO

RATIONALE: Gut microbes influence cardiovascular disease and thrombosis risks through the production of trimethylamine N-oxide (TMAO). Microbiota-dependent generation of trimethylamine (TMA)-the precursor to TMAO-is rate limiting in the metaorganismal TMAO pathway in most humans and is catalyzed by several distinct microbial choline TMA-lyases, including the proteins encoded by the cutC/D (choline utilization C/D) genes in multiple human commensals. OBJECTIVE: Direct demonstration that the gut microbial cutC gene is sufficient to transmit enhanced platelet reactivity and thrombosis potential in a host via TMA/TMAO generation has not yet been reported. METHODS AND RESULTS: Herein, we use gnotobiotic mice and a series of microbial colonization studies to show that microbial cutC-dependent TMA/TMAO production is sufficient to transmit heightened platelet reactivity and thrombosis potential in a host. Specifically, we examine in vivo thrombosis potential employing germ-free mice colonized with either high TMA-producing stable human fecal polymcrobial communities or a defined CutC-deficient background microbial community coupled with a CutC-expressing human commensal±genetic disruption of its cutC gene (ie, Clostridium sporogenes Δ cutC). CONCLUSIONS: Collectively, these studies point to the microbial choline TMA-lyase pathway as a rational molecular target for the treatment of atherothrombotic heart disease.


Assuntos
Proteínas de Bactérias/metabolismo , Transplante de Microbiota Fecal , Liases/metabolismo , Ativação Plaquetária , Trombose/microbiologia , Adulto , Animais , Proteínas de Bactérias/genética , Colina/metabolismo , Clostridium/enzimologia , Clostridium/genética , Feminino , Microbioma Gastrointestinal , Humanos , Liases/genética , Masculino , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Trombose/sangue
10.
Mol Microbiol ; 103(2): 347-365, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27775185

RESUMO

Fungal secondary metabolites (SMs) are extremely important in medicine and agriculture, but regulation of their biosynthesis is incompletely understood. We have developed a genetic screen in Aspergillus nidulans for negative regulators of fungal SM gene clusters and we have used this screen to isolate mutations that upregulate transcription of the non-ribosomal peptide synthetase gene required for nidulanin A biosynthesis. Several of these mutations are allelic and we have identified the mutant gene by genome sequencing. The gene, which we designate mcrA, is conserved but uncharacterized, and it encodes a putative transcription factor. Metabolite profiles of mcrA deletant, mcrA overexpressing, and parental strains reveal that mcrA regulates at least ten SM gene clusters. Deletion of mcrA stimulates SM production even in strains carrying a deletion of the SM regulator laeA, and deletion of mcrA homologs in Aspergillus terreus and Penicillum canescens alters the secondary metabolite profile of these organisms. Deleting mcrA in a genetic dereplication strain has allowed us to discover two novel compounds as well as an antibiotic not known to be produced by A. nidulans. Deletion of mcrA upregulates transcription of hundreds of genes including many that are involved in secondary metabolism, while downregulating a smaller number of genes.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Família Multigênica , Mutação , Metabolismo Secundário , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
11.
Fungal Genet Biol ; 119: 1-6, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30096370

RESUMO

Acetylaranotin is an epipolythiodiketopiperazine (ETP) secondary metabolite with a broad range of bioactivities. We demonstrated that ATEG_01465.1 located outside of acetylaranotin gene cluster is responsible for catalyzing the S-methylation of its biosynthetic pathway. Combining the previous characterization of acetylaranotin biosynthetic gene cluster together with the identification of its S-methyltransferase provides a means to obtain second-generation acetylaranotin derivatives previously inaccessible. By permutations of targeted deletions of ATEG_01465.1, acetyltransferase (AtaH), and benzoate hydroxylase (AtaY), three novel acetylaranotin derivatives were produced by Aspergillus terreus.


Assuntos
Vias Biossintéticas/genética , Metiltransferases/genética , Oxepinas/metabolismo , Piperazinas/metabolismo , Acetiltransferases/genética , Aspergillus/genética , Aspergillus/metabolismo , Genoma Fúngico/genética , Família Multigênica/genética , Oxigenases/genética , Deleção de Sequência/genética
12.
Fungal Genet Biol ; 89: 84-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851300

RESUMO

Genome sequencing of the fungus Aspergillus terreus uncovered a number of silent core structural biosynthetic genes encoding enzymes presumed to be involved in the production of cryptic secondary metabolites. There are five nonribosomal peptide synthetase (NRPS)-like genes with the predicted A-T-TE domain architecture within the A. terreus genome. Among the five genes, only the product of pgnA remains unknown. The Tet-on system is an inducible, tunable and metabolism-independent expression system originally developed for Aspergillus niger. Here we report the adoption of the Tet-on system as an effective gene activation tool in A. terreus. Application of this system in A. terreus allowed us to uncover the product of the cryptic NRPS-like gene, pgnA. Furthermore expression of pgnA in the heterologous Aspergillus nidulans host suggested that the pgnA gene alone is necessary for phenguignardic acid (1) biosynthesis.


Assuntos
Aspergillus/enzimologia , Aspergillus/genética , Doxiciclina/farmacologia , Genes Fúngicos/genética , Peptídeo Sintases/genética , Aspergillus/efeitos dos fármacos , Aspergillus/metabolismo , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/genética , Produtos Biológicos/metabolismo , Dioxolanos/metabolismo , Família Multigênica , Ativação Transcricional
13.
Proc Natl Acad Sci U S A ; 110(42): 17065-70, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082142

RESUMO

The hallmark trait of fungal secondary-metabolite gene clusters is well established, consisting of contiguous enzymatic and often regulatory gene(s) devoted to the production of a metabolite of a specific chemical class. Unexpectedly, we have found a deviation from this motif in a subtelomeric region of Aspergillus fumigatus. This region, under the control of the master regulator of secondary metabolism, LaeA, contains, in its entirety, the genetic machinery for three natural products (fumitremorgin, fumagillin, and pseurotin), where genes for fumagillin and pseurotin are physically intertwined in a single supercluster. Deletions of 29 adjoining genes revealed that fumagillin and pseurotin are coregulated by the supercluster-embedded regulatory gene with biosynthetic genes belonging to one of the two metabolic pathways in a noncontiguous manner. Comparative genomics indicates the fumagillin/pseurotin supercluster is maintained in a rapidly evolving region of diverse fungal genomes. This blended design confounds predictions from established secondary-metabolite cluster search algorithms and provides an expanded view of natural product evolution.


Assuntos
Aspergillus fumigatus/metabolismo , Cicloexanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Genes Fúngicos/fisiologia , Indenos/metabolismo , Família Multigênica/fisiologia , Pirrolidinonas/metabolismo , Algoritmos , Aspergillus fumigatus/genética , Ácidos Graxos Insaturados/genética , Análise de Sequência de DNA/métodos , Sesquiterpenos/metabolismo
14.
PLoS Pathog ; 9(4): e1003289, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23592999

RESUMO

The secondary metabolome provides pathogenic fungi with a plethoric and versatile panel of molecules that can be deployed during host ingress. While powerful genetic and analytical chemistry methods have been developed to identify fungal secondary metabolites (SMs), discovering the biological activity of SMs remains an elusive yet critical task. Here, we describe a process for identifying the immunosuppressive properties of Aspergillus SMs developed by coupling a cost-effective microfluidic neutrophil chemotaxis assay with an in vivo zebrafish assay. The microfluidic platform allows the identification of metabolites inhibiting neutrophil recruitment with as little as several nano-grams of compound in microliters of fluid. The zebrafish assay demonstrates a simple and accessible approach for performing in vivo studies without requiring any manipulation of the fish. Using this methodology we identify the immunosuppressive properties of a fungal SM, endocrocin. We find that endocrocin is localized in Aspergillus fumigatus spores and its biosynthesis is temperature-dependent. Finally, using the Drosophila toll deficient model, we find that deletion of encA, encoding the polyketide synthase required for endocrocin production, yields a less pathogenic strain of A. fumigatus when spores are harvested from endocrocin permissive but not when harvested from endocrocin restrictive conditions. The tools developed here will open new "function-omic" avenues downstream of the metabolomics, identification, and purification phases.


Assuntos
Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , Neutrófilos/imunologia , Animais , Antracenos/metabolismo , Aspergillus fumigatus/genética , Drosophila/enzimologia , Drosophila/genética , Drosophila/imunologia , Terapia de Imunossupressão , Metaboloma , Microfluídica , Neutrófilos/efeitos dos fármacos , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Metabolismo Secundário , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo
15.
Molecules ; 20(1): 325-34, 2014 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25547729

RESUMO

Six sesquiterpenoids 1-6, including two new ones, an ent-daucane-type sesquiterpenoid, asperaculane A (1), and a nordaucane one, asperaculane B (2), and four known nordaucane derivatives, aculenes A-D 3-6, together with the known secalonic acid D (7), were isolated from a fermentation culture of the fungus Aspergillus aculeatus. Their structures and absolute configurations were established by analyses of their spectroscopic data, including 1D and 2D-NMR spectra, HR-ESIMS, electronic circular dichroism (ECD) data, and quantum chemical calculations. These metabolites were evaluated for in vitro cytotoxic activity against two cell lines, human cancer cell lines (HeLa) and one normal hamster cell line (CHO).


Assuntos
Aspergillus/química , Sesquiterpenos/isolamento & purificação , Animais , Células CHO , Linhagem Celular Tumoral , Dicroísmo Circular , Cricetinae , Cricetulus , Humanos , Espectroscopia de Ressonância Magnética , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Espectrometria de Massas por Ionização por Electrospray
16.
Imeta ; 3(4): e216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135697

RESUMO

Hundreds of microbiota gene expressions are significantly different between healthy and diseased humans. The "bottleneck" preventing a mechanistic dissection of how they affect host biology/disease is that many genes are encoded by nonmodel gut commensals and not genetically manipulatable. Approaches to efficiently identify their gene transfer methodologies and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. This paper will introduce a step-by-step protocol to identify gene transfer conditions and build the gene manipulation tools for nonmodel gut microbes, focusing on Gram-negative Bacteroidia and Gram-positive Clostridia organisms. This protocol enables us to identify gene transfer methods and develop gene manipulation tools without prior knowledge of their genome sequences, by targeting bacterial 16s ribosomal RNAs or expanding their compatible replication origins combined with clustered regularly interspaced short palindromic repeats machinery. Such an efficient and generalizable approach will facilitate functional studies that causally connect gut microbiota genes to host diseases.

17.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38506708

RESUMO

Innate lymphoid cells (ILCs) can promote host defense, chronic inflammation, or tissue protection and are regulated by cytokines and neuropeptides. However, their regulation by diet and microbiota-derived signals remains unclear. We show that an inulin fiber diet promotes Tph1-expressing inflammatory ILC2s (ILC2INFLAM) in the colon, which produce IL-5 but not tissue-protective amphiregulin (AREG), resulting in the accumulation of eosinophils. This exacerbates inflammation in a murine model of intestinal damage and inflammation in an ILC2- and eosinophil-dependent manner. Mechanistically, the inulin fiber diet elevated microbiota-derived bile acids, including cholic acid (CA) that induced expression of ILC2-activating IL-33. In IBD patients, bile acids, their receptor farnesoid X receptor (FXR), IL-33, and eosinophils were all upregulated compared with controls, implicating this diet-microbiota-ILC2 axis in human IBD pathogenesis. Together, these data reveal that dietary fiber-induced changes in microbial metabolites operate as a rheostat that governs protective versus pathologic ILC2 responses with relevance to precision nutrition for inflammatory diseases.


Assuntos
Imunidade Inata , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Interleucina-33 , Inulina , Linfócitos , Fibras na Dieta , Ácidos e Sais Biliares , Inflamação
18.
Microbiome ; 12(1): 86, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730492

RESUMO

BACKGROUND: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.


Assuntos
Diferenciação Celular , Clostridiales , Microbioma Gastrointestinal , Linfócitos T Reguladores , Trichuris , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Malásia , Clostridiales/isolamento & purificação , Humanos , Ácidos Graxos Voláteis/metabolismo , Feminino , Tricuríase/parasitologia , Tricuríase/imunologia , Tricuríase/microbiologia
19.
bioRxiv ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39463929

RESUMO

Enteric neurons control gut physiology by regulating peristalsis, nutrient absorption, and secretion 1 . Disruptions in microbial communities caused by antibiotics or enteric infections result in the loss of enteric neurons and long-term motility disorders 2-5 . However, the signals and underlying mechanisms of this microbiota-neuron communication are unknown. We studied the effects of microbiota on the recovery of the enteric nervous system after microbial dysbiosis caused by antibiotics. We found that both enteric neurons and glia are lost after antibiotic exposure, but recover when the pre-treatment microbiota is restored. Using murine gnotobiotic models and fecal metabolomics, we identified neurogenic bacterial species and their derived metabolite succinate as sufficient to rescue enteric neurons and glia. Unbiased single-nuclei RNA-seq analysis uncovered a novel neural precursor-like population marked by the expression of the neuronal gene Nav2. Genetic fate-mapping showed that Plp1+ enteric glia differentiate into neurons following antibiotic exposure. In contrast, Nav2+ neurons expand upon succinate treatment and indicate an alternative mode of neuronal regeneration under recovery conditions. Our findings highlight specific microbial species, metabolites, and the underlying cellular mechanisms involved in neuronal regeneration, with potential therapeutic implications for peripheral neuropathies.

20.
Cell Host Microbe ; 32(5): 661-675.e10, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657606

RESUMO

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.


Assuntos
Aminoácidos de Cadeia Ramificada , Aminoácidos , Microbioma Gastrointestinal , Homeostase , Triptofano , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Triptofano/metabolismo , Camundongos Endogâmicos C57BL , Nutrientes/metabolismo , Intestinos/microbiologia , Humanos , Metabolômica , Glucose/metabolismo , Serotonina/metabolismo , Vida Livre de Germes , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA