Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 12(28): 3849-60, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27283881

RESUMO

A one-step multipurpose strategy is developed to realize a sophisticated design that simultaneously integrates three desirable components of nitrogen dopant, 3D graphene, and 1D mesoporous metal oxide nanowires into one hybrid material. This facile synthetic strategy includes a one-step hydrothermal reaction followed by topotactic calcination. The utilization of urea as the starting reagent enables the precipitation of precursor nanowires and concurrent doping of nitrogen heteroatoms on graphene during hydrothermal reaction, while at the same time the graphene nanosheets are self-assembled to afford a 3D scaffold. Detailed characterizations on the final calcined product are conducted to confirm the phase purity, porosity, nitrogen composition, and morphology. The integration of two building blocks, i.e., flexible graphene nanosheets and Co3 O4 nanowires, enables various intertwining behaviors such as seaming, bridging, hooping, bundling, and sandwiching, of which synergistic effect substantially enhances electrical and electrochemical properties of the resultant hybrid. For lithium ion battery application of the hybrid, a remarkably high capacity more than 1200 mA h g(-1) (at 100 mA g(-1) ) is stabilized over 100 cycles with coulombic efficiency higher than 97%. Even during rapid discharge/charge processes (1000 mA g(-1) ), a reversible charge capacity of 812 mA h g(-1) is still retained after 230 cycles.

2.
Nanotechnology ; 27(4): 045401, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26657319

RESUMO

Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12,441 mAh g(-1) at a current density of 100 mA g(-1). When they were cycled at a limited capacity of 800 mAh g(-1) at current densities of 200 or 400 mA g(-1), these cathodes showed stable charge voltages of ∼3.65 or 3.90 V, corresponding to energy efficiencies of ∼71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.


Assuntos
Elastina/química , Fontes de Energia Elétrica , Lítio/química , Nanotubos de Carbono/química , Oxigênio/química , Catálise , Eletrodos , Metais/química , Nanotubos de Carbono/ultraestrutura , Proteínas Recombinantes de Fusão/química , Sulfatos/química
3.
Small ; 11(47): 6278-84, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26528676

RESUMO

Nitrogen and sulfur dual-doped Mo2 C nanosheets provide low operating potential (-86 mV for driving 10 mA cm(-2) of current density). Co-doping of N and S heteroatoms can improve the wetting property of the Mo2C electrocatalyst in aqueous solution and induce synergistic effects via σ-donation and π-back donation with hydronium cation.

4.
Small ; 11(30): 3694-702, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25899526

RESUMO

Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors.

5.
RSC Adv ; 9(20): 11369-11376, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35520211

RESUMO

Silicon-based anode materials are indispensable components in developing high energy density lithium-ion batteries, yet their practical application still faces great challenges, such as large volume change during the lithiation and delithiation process that causes the pulverization of silicon particles, and continuous formation and reformation of the solid electrolyte interfaces (SEI) which results in a low initial coulombic efficiency. As an endeavor to address these problems, in this study, Si/SiO/Li2SiO3@C structures were prepared via a facile method using SiO, pitch powder and Li2CO3/PVA solution followed by annealing treatment. The Si/SiO/Li2SiO3@C composite shows a great improvement in lithium storage where a high discharge capacity of 1645.47 mA h g-1 was delivered with the 1st C.E. of 69.05% at 100 mA g-1. These results indicate that the designed method of integrating prelithiation and carbon coating for SiO and the as-prepared macro scale Si/SiO/Li2SiO3@C structures are practical for implementation in lithium-ion battery technology.

6.
ACS Appl Mater Interfaces ; 9(49): 42438-42443, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29192761

RESUMO

A green and scalable route to form a honeycomblike macroporous network by homogeneously weaving V2O5 nanowires and carbon nanotubes (CNTs) was developed. The intertwinement between V2O5 nanowires and CNTs not only integrates nanopores into the macroporous system but also elevates the collection and transfer of charges through the conductive network. The unique combination of V2O5 nanowires and CNTs renders the composite monolith with synergic properties for substantially enhancing electrochemical kinetics of lithiation/delithiation when used as a lithium-ion battery (LIB) cathode. This work presents a useful approach for a large-scale production of cellular monoliths as high-performance LIB cathodes.

7.
ACS Appl Mater Interfaces ; 7(47): 26085-93, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26554275

RESUMO

Three-dimensional (3D) graphene aerogel (GA) has emerged as an outstanding support for metal oxides to enhance the overall energy-storage performance of the resulting hybrid materials. In the current stage of the studies, metals/metal oxides inside GA are in uncrafted geometries. Introducing structure-controlled metal oxides into GA may further push electrochemical properties of metal oxide-GA hybrids. Using rutile SnO2 as an example, we demonstrated here a facile hydrothermal strategy combined with a preconditioning technique named vacuum-assisted impregnation for in situ construction of controlled anisotropic SnO2 heterostructures inside GA. The obtained hybrid material was fully characterized in detail, and its formation mechanism was investigated by monitoring the phase-transformation process. Rational integration of the two advanced structures, anisotropic SnO2 and 3D GA, synergistically led to enhanced lithium-storage properties (1176 mAh/g for the first cycle and 872 mAh/g for the 50th cycle at 100 mA/g) as compared with its two counterparts, namely, rough nanoparticles@3D GA and anisotropic SnO2@2D graphene sheets (618 and 751 mAh/g for the 50th cycle at 100 mA/g, respectively). It was also well-demonstrated that this hybrid material was capable of delivering high specific capacity at rapid charge/discharge cycles (1044 mAh/g at 100 mA/g, 847 mAh/g at 200 mA/g, 698 mAh/g at 500 mA/g, and 584 mAh/g at 1000 mA/g). The in situ integration strategy along with vacuum-assisted impregnation technique presented here shows great potential as a versatile tool for accessing a variety of sophisticated smart structures in the form of anisotropic metals/metal oxides within 3D GA toward useful applications.

8.
Chem Asian J ; 9(9): 2555-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24962727

RESUMO

The coupling of proteins with self-assembly properties and proteins that are capable of recognizing and mineralizing specific inorganic species is a promising strategy for the synthesis of nanoscale materials with controllable morphology and functionality. Herein, GPG-AG3 protein fibers with both of these properties were constructed and served as templates for the synthesis of Pt and Pd nanotubes. The protein fibers of assembled GPG-AG3 were more than 10 µm long and had diameters of 20-50 nm. The as-synthesized Pt and Pd nanotubes were composed of dense layers of ~3-5 nm Pt and Pd nanoparticles. When tested as cathodes in lithium-O2 batteries, the porous Pt nanotubes showed low charge potentials of 3.8 V, with round-trip efficiencies of about 65% at a current density of 100 mA g(-1).


Assuntos
Biomimética , Elastina/química , Engenharia Genética , Lítio/química , Nanotubos/química , Oxigênio/química , Peptídeos/química , Fontes de Energia Elétrica , Técnicas Eletroquímicas , Paládio/química , Platina/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA