Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(10): e9737, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533583

RESUMO

RATIONALE: Human exhaled breath usually contains unique proteins that may provide clues to characterize individual physiological activities and many diseases. However, the concentration of exhaled proteins in exhaled breath is extremely low and usually does not reach the detection limits of all online breath mass spectrometry instruments. Therefore, developing a new breath sampler for collecting and characterizing exhaled proteins is important. METHODS: In this study, a new mask-based wearable sampler was developed by fixing metal materials into the inner surface of the KN95 mask. Human exhaled proteins could be directly adsorbed onto the metal material while wearing the mask. After sampling, the collected proteins were eluted, digested, and identified using nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS). RESULTS: The adsorption of exhaled proteins was evaluated, showing that modified gold foil is an effective material for collecting exhaled proteins. Various endogenous proteins were successfully identified from exhaled breath, many of which can be potential biomarkers for disease diagnosis. CONCLUSIONS: By coupling the newly developed mask sampler with nano-LC-MS/MS, human exhaled proteins were successfully collected and identified. Our results show that the mask sampler is wearable, simple, and convenient, and the method is noninvasive for investigating disease diagnosis and human health.


Assuntos
Espectrometria de Massas em Tandem , Dispositivos Eletrônicos Vestíveis , Humanos , Espectrometria de Massas em Tandem/métodos , Projetos Piloto , Testes Respiratórios/métodos , Cromatografia Líquida/métodos , Aerossóis
2.
Eur J Clin Microbiol Infect Dis ; 39(12): 2271-2277, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32681308

RESUMO

We developed a chemiluminescence immunoassay method based on the recombinant nucleocapsid antigen and assessed its performance for the clinical diagnosis of severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infections by detecting SARS-CoV-2-specific IgM and IgG antibodies in patients. Full-length recombinant nucleocapsid antigen and tosyl magnetic beads were used to develop the chemiluminescence immunoassay approach. Plasmas from 29 healthy cohorts, 51 tuberculosis patients, and 79 confirmed SARS-CoV-2 patients were employed to evaluate the chemiluminescence immunoassay method performance for the clinical diagnosis of SARS-CoV-2 infections. A commercial ELISA kit (Darui Biotech, China) using the same nucleocapsid antigen was used for the in-parallel comparison with our chemiluminescence immunoassay method. The IgM and IgG manner of testing in the chemiluminescence immunoassay method showed a sensitivity and specificity of 60.76% (95% CI 49.1 to 71.6) and 92.25% (95% CI 83.4 to 97.2) and 82.28% (95% CI 72.1 to 90.0) and 97.5% (95% CI 91.3 to 99.7), respectively. Higher sensitivity and specificity were observed in the chemiluminescence immunoassay method compared with the Darui Biotech ELISA kit. The developed high sensitivity and specificity chemiluminescence immunoassay IgG testing method combined with the RT-PCR approach can improve the clinical diagnosis for SARS-CoV-2 infections and thus contribute to the control of COVID-19 expansion.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Medições Luminescentes/métodos , Proteínas do Nucleocapsídeo/sangue , Pandemias , Pneumonia Viral/diagnóstico , Adolescente , Adulto , Idoso , Betacoronavirus/patogenicidade , COVID-19 , Teste para COVID-19 , Estudos de Casos e Controles , China/epidemiologia , Infecções por Coronavirus/sangue , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus , Reações Falso-Positivas , Feminino , Humanos , Imunoensaio/métodos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Fosfoproteínas , Pneumonia Viral/sangue , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , SARS-CoV-2 , Sensibilidade e Especificidade , Índice de Gravidade de Doença
3.
Thorax ; 74(12): 1161-1167, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611342

RESUMO

BACKGROUND: Perturbed iron homeostasis is a risk factor for tuberculosis (TB) progression and an indicator of TB treatment failure and mortality. Few studies have evaluated iron homeostasis as a TB diagnostic biomarker. METHODS: We recruited participants with TB, latent TB infection (LTBI), cured TB (RxTB), pneumonia (PN) and healthy controls (HCs). We measured serum levels of three iron biomarkers including serum iron, ferritin and transferrin, then established and validated our prediction model. RESULTS: We observed and verified that the three iron biomarker levels correlated with patient status (TB, HC, LTBI, RxTB or PN) and with the degree of lung damage and bacillary load in patients with TB. We then built a TB prediction model, neural network (NNET), incorporating the data of the three iron biomarkers. The model showed good performance for diagnosis of TB, with 83% (95% CI 77 to 87) sensitivity and 86% (95% CI 83 to 89) specificity in the training data set (n=663) and 70% (95% CI 58 to 79) sensitivity and 92% (95% CI 86 to 96) specificity in the test data set (n=220). The area under the curves (AUCs) of the NNET model to discriminate TB from HC, LTBI, RxTB and PN were all >0.83. Independent validation of the NNET model in a separate cohort (n=967) produced an AUC of 0.88 (95% CI 0.85 to 0.91) with 74% (95% CI 71 to 77) sensitivity and 92% (95% CI 87 to 96) specificity. CONCLUSIONS: The established NNET TB prediction model discriminated TB from HC, LTBI, RxTB and PN in a large cohort of patients. This diagnostic assay may augment current TB diagnostics.


Assuntos
Ferro/sangue , Tuberculose/diagnóstico , Adolescente , Adulto , Biomarcadores/sangue , Diagnóstico Diferencial , Estudos de Viabilidade , Feminino , Ferritinas/sangue , Homeostase , Humanos , Tuberculose Latente/diagnóstico , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Pneumonia/diagnóstico , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Transferrina/análise , Adulto Jovem
4.
Protein Expr Purif ; 111: 87-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25858313

RESUMO

Botulinum neurotoxins are the most potent protein toxins known to human. To date, seven subtypes of the BoNT/F serotype (BoNT/F1 to BoNT/F7) have been identified, among which BoNT/F5 and BoNT/F7 are the most divergent. However, little structural and functional information is available for these two subtypes due to a lack of suitable recombinant proteins for biochemical characterization, except that they appear to possess unique substrate recognition mechanisms, thereby impeding development of vaccine or inhibitors against these proteins. In the present study, we utilized a combinatorial approach which involved examining the effects of different affinity tags, mapping C-terminal truncation mutants and optimization of expression and purification conditions, that allowed us to successfully express and purify soluble and highly active recombinant LC/F5 and LC/F7 proteins. GST-LC/F5(1-450) and 6× His-LC/F5(1-405) were the formats which exhibit the highest level of solubility and activity, whereas GST-LC/F7(1-405) was the most active form of LC/F7. In comparison, GST-LC/F5(1-450) was more active than GST-LC/F7(1-405), which was in turn more active than the LC/F1 control. Our data suggest that solubility of these proteins strongly correlated with their catalytic activity. Successful expression and purification of LC/F5 and LC/F7 in this work will, for the first time, provide materials for further characterization of these two subtypes of BoNT/F, which is essential for future development of protective vaccine or other therapeutic strategies, as well as BoNT/F protein engineering.


Assuntos
Toxinas Botulínicas/biossíntese , Toxinas Botulínicas/química , Toxinas Botulínicas/isolamento & purificação , Expressão Gênica , Mutação , Toxinas Botulínicas/genética , Humanos
5.
J Biol Chem ; 288(39): 27881-7, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23963459

RESUMO

Botulinum neurotoxins are the most potent protein toxins in nature. Despite the potential to block neurotransmitter release at the neuromuscular junction and cause human botulism, they are widely used in protein therapies. Among the seven botulinum neurotoxin serotypes, mechanisms of substrate recognition and specificity are known to a certain extent in the A, B, E, and F light chains, but not in the D light chain (LC/D). In this study, we addressed the unique substrate recognition mechanism of LC/D and showed that this serotype underwent hydrophobic interactions with VAMP-2 at its V1 motif. The LC/D B3, B4, and B5 binding sites specifically recognize the hydrophobic residues in the V1 motif of VAMP-2. Interestingly, we identified a novel dual recognition mechanism employed by LC/D in recognition of VAMP-2 sites at both the active site and distal binding sites, in which one site of VAMP-2 was recognized by two independent, but functionally similar LC/D sites that were complementary to each other. The dual recognition strategy increases the tolerance of LC/D to mutations and renders it a good candidate for engineering to improve its therapeutic properties. In conclusion, in this study, we identified a unique multistep substrate recognition mechanism by LC/D and provide insights for LC/D engineering and antitoxin development.


Assuntos
Toxinas Botulínicas/química , Proteína 2 Associada à Membrana da Vesícula/química , Motivos de Aminoácidos , Antitoxinas/química , Sítios de Ligação , Catálise , Dicroísmo Circular , Humanos , Metaloproteases/química , Modelos Moleculares , Neurônios/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína
6.
Heliyon ; 10(2): e24612, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293396

RESUMO

Vaccination is the most feasible way of preventing rabies, an ancient zoonosis that remains a major public health concern globally. However, administration of inactivated rabies vaccination without adjuvants is always inefficient and necessitates four to five injections. In the current study, we explored the adjuvant characteristics of cordycepin, a major bioactive component of Cordyceps militaris, to boost immune responses against a commercially available rabies vaccine. We found that cordycepin could stimulate stronger phenotypic and functional maturation of dendritic cells (DCs). For animal experiments, mice were immunized 3 times with rabies vaccine in the presence or absence of cordycepin at 1-week interval. Analysis of T cell differentiation and serum antibody isotypes showed that humoral immunity was dominant with a Th2 biased immune response. These results were also supported by the raised ratio of follicular helper T cells (TFH) and germinal center B cells (GCB). Thus, titer of rabies virus neutralizing antibody (RVNAb) and rabies virus-specific memory B cells were both raised as a result. Furthermore, administration of cordycepin did not cause pathological phenomena or body weight loss. The findings indicate that cordycepin could be used as a promising adjuvant for rabies vaccines to get a higher range of protection without any side effects.

7.
Microbiol Spectr ; 11(3): e0426122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37078855

RESUMO

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a bacterial pathogen that may cause serious drug-resistant infections that are potentially fatal. To investigate the genetic characteristics of these organisms, we tested 416 P. aeruginosa strains recovered from 12 types of clinical samples collected in 29 different hospital wards in 10 hospitals in Guangdong Province, China, from 2017 to 2020. These strains were found to belong to 149 known sequence types (STs) and 72 novel STs, indicating that transmission of these strains involved multiple routes. A high rate of resistance to imipenem (89.4%) and meropenem (79.4%) and a high prevalence of pathogenic serotypes (76.4%) were observed among these strains. Six STs of global high-risk clones (HiRiCs) and a novel HiRiC strains, ST1971, which exhibited extensive drug resistance, were identified. Importantly, ST1971 HiRiC, which was unique in China, also exhibited high virulence, which alarmed the further surveillance on this highly virulent and highly resistant clone. Inactivation of the oprD gene and overexpression of efflux systems were found to be mainly responsible for carbapenem resistance in these strains; carriage of metallo-ß-lactamase (MBL)-encoding genes was less common. Interestingly, frameshift mutations (49.0%) and introduction of a stop codon (22.4%) into the oprD genes were the major mechanisms of imipenem resistance. On the other hand, expression of the MexAB-OprM efflux pump and MBL-encoding genes were mechanisms of resistance in >70% of meropenem-resistant strains. The findings presented here provide insights into the development of effective strategies for control of worldwide dissemination of CRPA. IMPORTANCE Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a major concern in clinical settings worldwide, yet few genetic and epidemiological studies on CRPA strains have been performed in China. Here, we sequence and analyze the genomes of 416 P. aeruginosa strains from hospitals in China to elucidate the genetic, phenotypic, and transmission characteristics of CRPA strains and to identify the molecular signatures responsible for the observed increase in the prevalence of CRPA infections in China. These findings may provide new insight into the development of effective strategies for worldwide control of CRPA and minimize the occurrence of untreatable infections in clinical settings.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Meropeném/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Pseudomonas aeruginosa , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Imipenem/farmacologia , Imipenem/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana
8.
Front Microbiol ; 13: 845229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558124

RESUMO

Tuberculosis (TB) continues to threaten many peoples' health worldwide, regardless of their country of residence or age. The current diagnosis of TB still uses mainly traditional, time-consuming, and/or culture-based techniques. Efforts have focused on discovering new biomarkers with higher efficiency and accuracy for TB diagnosis. Proteomics-the systematic study of protein diversity-is being applied to the discovery of novel protein biomarkers for different types of diseases. Mass spectrometry (MS) technology plays a revolutionary role in proteomics, and its applicability benefits from the development of other technologies, such as matrix-based and immune-based methods. MS and derivative strategies continuously contribute to disease-related discoveries, and some promising proteomic biomarkers for efficient TB diagnosis have been identified, but challenges still exist. For example, there are discrepancies in the biomarkers identified among different reports and the diagnostic accuracy of clinically applied proteomic biomarkers. The present review summarizes the current status and future perspectives of proteomics in the field of TB biomarker discovery and aims to elicit more promising findings for rapid and accurate TB diagnosis.

9.
mBio ; 13(5): e0200422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36000734

RESUMO

Tuberculosis (TB), which is caused by the single pathogenic bacterium, Mycobacterium tuberculosis, is among the top 10 lethal diseases worldwide. This situation has been exacerbated by the increasing number of cases of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB). Histamine is an organic nitrogenous compound that mediates a plethora of cell processes via different receptors. The expression of histamine receptor H1 (HRH1), one of the four histamine receptors identified to date was previously reported to be augmented by M. tuberculosis infection, although the underlying mechanism is unclear. In the present study, we applied confocal microscopy, flow cytometry, and Western blotting to show that HRH1 expression was enhanced in macrophages following mycobacterial infection. Furthermore, by combining techniques of gene knockdown, immunoprecipitation, intracellular bacterial burden analysis, fluorescence labeling, and imaging, we found that M. tuberculosis targeted the host HRH1 to suppress NOX2-mediated cROS production and inhibit phagosome maturation and acidification via the GRK2-p38MAPK signaling pathway. Our findings clarified the underlying mechanism of the M. tuberculosis and host HRH1 interaction and may provide useful information for the development of novel antituberculosis treatments. IMPORTANCE Once engulfed in macrophage phagosomes, M. tuberculosis adopts various strategies to take advantage of the host environment for its intracellular survival. Histamine is an organic nitrogen-containing compound that mediates a plethora of cellular processes via different receptors, but the crosstalk mechanism between M. tuberculosis and HRH1 in macrophages is not clear. Our results revealed that M. tuberculosis infection enhanced HRH1 expression, which in turn restrained macrophage bactericidal activity by modulating the GRK2-p38MAPK signaling pathway, inhibiting NOX2-mediated cROS production and phagosome maturation. Clarification of the underlying mechanism by which M. tuberculosis utilizes host HRH1 to favor its intracellular survival may provide useful information for the development of novel antituberculosis treatments.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Histamina , Tuberculose/microbiologia , Antituberculosos , Fagossomos/microbiologia , Nitrogênio/metabolismo
10.
Tuberculosis (Edinb) ; 129: 102108, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34274886

RESUMO

Tumor necrosis factor (TNF) is essential for the host defense against tuberculosis (TB). However, scarcity or excessive TNF production in macrophages can also increase susceptibility to TB. The precise mechanisms underlying how Mycobacterium tuberculosis (Mtb) induces TNF over-expression are unclear. Here, we show that Mtb infection significantly increases 5-hydroxylmethylocytosine (5hmC) levels in the TNF promoter. Luciferase reporter assays identify the precise methylated CpG sites that are essential to regulating TNF promoter activity. Infection simultaneously promotes the expression of the TET2 demethylase in macrophages. After inhibiting NF-κB or knocking down TET2, we found that TNF promoter demethylation levels is increased while Mtb-induced TNF expression decrease. Here, NF-κB binds to TET2 and mediates its recruitment to the TNF promoter to induce TNF demethylation. Finally, we show that TLR2 activation during Mtb infection promotes NF-κB translocation into the nucleus which is important for NF-κB-mediated TET2-dependent TNF promoter demethylation thus helps drive Mtb-induced TNF expression. Targeting this axis might be a novel strategy for host-directed therapy against TB.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Macrófagos , NF-kappa B , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa , Humanos , Desmetilação , Dioxigenases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis , NF-kappa B/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Tuberculose
11.
Artigo em Inglês | MEDLINE | ID: mdl-20208158

RESUMO

MaoC-like dehydratase (MaoC) plays an important role in supplying (R)-3-hydroxyacyl-CoA from the fatty-acid oxidation pathway to polyhydroxyalkanoate (PHA) biosynthetic pathways. PHAs have been attracting much attention as they can be used in the biosynthesis of synthetic plastics. Crystals of MaoC from Phytophora capsici were grown by the hanging-drop vapour-diffusion method at 289 K in a number of screening conditions. An MaoC crystal diffracted to 1.93 A resolution using X-ray radiation and belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 81.458, b = 82.614, c = 124.228 A, alpha = beta = gamma = 90 degrees.


Assuntos
Hidroliases/química , Phytophthora/enzimologia , Biocatálise , Cristalização , Cristalografia por Raios X , Expressão Gênica , Hidroliases/genética , Hidroliases/isolamento & purificação , Hidroliases/metabolismo
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 12): 1579-82, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21139199

RESUMO

The Rv0045c protein is predicted to be an esterase that is involved in lipid metabolism in Mycobacterium tuberculosis. The protein was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The Rv0045c protein crystals diffracted to a resolution of 2.7 Šusing a synchrotron-radiation source and belonged to space group P3(1) or P3(2), with unit-cell parameters a=b=73.465, c=48.064 Å, α=ß=90, γ=120°. Purified SeMet-labelled Rv0045c protein was also crystallized and formed crystals that diffracted to a resolution of 3.0 Šusing an in-house X-ray radiation source.


Assuntos
Proteínas de Bactérias/química , Esterases/química , Mycobacterium tuberculosis/enzimologia , Cromatografia em Gel , Cristalografia por Raios X , Raios X
13.
Artigo em Inglês | MEDLINE | ID: mdl-20606290

RESUMO

Cecropin B is a 37-residue cationic antimicrobial peptide derived from the haemolymph of Bombyx mori. The precise mechanism by which cecropins exert their antimicrobial and cytolytic activities is not well understood. Crystals of cecropin B were obtained by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant at 289 K. The crystal diffracted to 1.43 A resolution using X-ray radiation and belonged to the orthorhombic space group P1, with unit-cell parameters a = 15.08, b = 22.75, c = 30.20 A, alpha = 96.9, beta = 103.1, gamma = 96.5 degrees. The asymmetric unit contained only one molecule of cecropin B, with a calculated Matthews coefficient of 2.48 A(3) Da(-1) and a solvent content of 50.4%.


Assuntos
Bombyx/química , Proteínas de Insetos/química , Animais , Cristalização , Cristalografia por Raios X
14.
Biotechnol Lett ; 32(11): 1719-23, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20640873

RESUMO

A new monoamine oxidase type C-like dehydratase gene (MaoC) supplying (R)-3-hydroxyacyl-CoA from the fatty acid oxidation pathway to polyhydroxyalkanoates (PHAs) biosynthetic pathways was identified from Phytophthora capsici. MaoC was over-expressed in Escherichia coli and the recombinant MaoC was purified. The purified tagged MaoC shows the enoyl-CoA hydratase activity of 58 U/mg towards crotonyl-CoA. MaoC may not fold properly above 40°C which was revealed by circular dichroism analysis. Crystal of MaoC diffracts to 1.93 with unit-cell parameters of a = 81.458 Å, b = 82.614 Å, c = 124.228 [corrected] Å, α = ß = γ = 90°.


Assuntos
Hidroliases/genética , Hidroliases/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Phytophthora/enzimologia , Poli-Hidroxialcanoatos/metabolismo , Acil Coenzima A/metabolismo , Dicroísmo Circular , Clonagem Molecular , Cristalografia por Raios X , DNA Fúngico/química , DNA Fúngico/genética , Escherichia coli/genética , Ácidos Graxos/metabolismo , Hidroliases/química , Hidroliases/isolamento & purificação , Dados de Sequência Molecular , Monoaminoxidase/química , Monoaminoxidase/isolamento & purificação , Oxirredução , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Temperatura
15.
J Infect ; 80(6): e19-e26, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32171871

RESUMO

Tuberculosis (TB) is a major cause of morbidity and mortality worldwide. The host-directed therapy is a promising strategy for TB treatment that synergize with anti-TB treatment drugs. In this study, we found that the anti-chronic lymphocytic leukemia drug, ibrutinib, inhibited the growth of intracellular Mtb in human macrophages. Mechanisms studies showed that ibrutinib treatment significantly decreased p62 and increased LC3b proteins in Mtb infected macrophages. In addition, ibrutinib increased LC3b colocalization with intracellular Mtb and auto-lysosome fusion. Furthermore, inhibition of autophagy by using siRNA targeting ATG7 abolished the effect of ibrutinib-mediated suppression of intracellular Mtb. Next, we found that ibrutinib induced autophagy was through inhibition of BTK/Akt/mTOR pathway. Finally, we confirmed that ibrutinib treatment significantly reduced Mtb load in mediastinal node and spleen of Mtb infected mice. In conclusion, our data suggest that ibrutinib is a potential host-directed therapy candidate against TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Adenina/análogos & derivados , Animais , Autofagia , Macrófagos , Camundongos , Piperidinas , Tuberculose/tratamento farmacológico
16.
Gut Microbes ; 12(1): 1-12, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33190591

RESUMO

The human gut microbiome is the presumed site in which the emergence and evolution of antibiotic-resistant organisms constantly take place. To delineate the genetic basis of resistance formation in gut microbiome strains, we investigated the changes in the subpopulation structure of Escherichia coli in rat intestine before and after antimicrobial treatment. We observed that antibiotic treatment was selected for an originally minor subpopulation E. coli carrying the biofilm-forming genetic locus pgaABCD and the toxin-antitoxin system HipAB. Such strains possessed dramatically enhanced ability to withstand the detrimental effects of antibiotics, becoming a dominant subspecies upon antibiotic treatment and eventually evolving into resistant mutants. In contrast, E. coli strains that did not carry pgaABCD and HipAB were eradicated upon antibiotic treatment. Our findings, therefore, suggested that genes encoding biofilm-forming ability played an important role in conferring specific gut E. coli strains the ability to evolve into resistant strains upon a prolonged antibiotic treatment, and that such strains may therefore be considered bacterial antibiotic resistance progenitor cells in the gut microbiome.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Biofilmes/crescimento & desenvolvimento , DNA Girase/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/crescimento & desenvolvimento , Ratos
17.
Bioelectrochemistry ; 136: 107591, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32645567

RESUMO

The highly contagious norovirus (NoV) is the most common causative agent of acute gastroenteritis, resulting in >200,000 deaths worldwide annually. A rapid and sensitive detection method is a prerequisite for effective prevention and timely identification of NoV contamination. In the present study, we developed a photoelectrochemical (PEC) biosensor coupled with a novel custom-made monoclonal antibody (mAb) for specific and sensitive NoV detection. Our system could detect levels of recombinant NoV capsid protein VP1 as low as 2 × 10-10 g mL-1 (4.9 pM) within 30 min in a concentration-dependent manner. More importantly, the biosensor was versatile in detecting virus isolated from real samples that were as low as 46 copies µL-1. These findings indicate that this system has the potential to serve as a convenient point-of-care system for diagnosing NoV infection and detecting NoV-contaminated food samples.


Assuntos
Técnicas Eletroquímicas/instrumentação , Norovirus/isolamento & purificação , Processos Fotoquímicos , Anticorpos Monoclonais/imunologia , Técnicas Biossensoriais/métodos , Limite de Detecção , Norovirus/imunologia
18.
EBioMedicine ; 53: 102686, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32114394

RESUMO

BACKGROUND: Tuberculosis (TB) continues to be a critical global health problem, which killed millions of lives each year. Certain circulating cell subsets are thought to differentially modulate the host immune response towards Mycobacterium tuberculosis (Mtb) infection, but the nature and function of these subsets is unclear. METHODS: Peripheral blood mononuclear cells (PBMC) were isolated from healthy controls (HC), latent tuberculosis infection (LTBI) and active tuberculosis (TB) and then subjected to single-cell RNA sequencing (scRNA-seq) using 10 × Genomics platform. Unsupervised clustering of the cells based on the gene expression profiles using the Seurat package and passed to tSNE for clustering visualization. Flow cytometry was used to validate the subsets identified by scRNA-Seq. FINDINGS: Cluster analysis based on differential gene expression revealed both known and novel markers for all main PBMC cell types and delineated 29 cell subsets. By comparing the scRNA-seq datasets from HC, LTBI and TB, we found that infection changes the frequency of immune-cell subsets in TB. Specifically, we observed gradual depletion of a natural killer (NK) cell subset (CD3-CD7+GZMB+) from HC, to LTBI and TB. We further verified that the depletion of CD3-CD7+GZMB+ subset in TB and found an increase in this subset frequency after anti-TB treatment. Finally, we confirmed that changes in this subset frequency can distinguish patients with TB from LTBI and HC. INTERPRETATION: We propose that the frequency of CD3-CD7+GZMB+ in peripheral blood could be used as a novel biomarker for distinguishing TB from LTBI and HC. FUND: The study was supported by Natural Science Foundation of China (81770013, 81525016, 81772145, 81871255 and 91942315), National Science and Technology Major Project (2017ZX10201301), Science and Technology Project of Shenzhen (JCYJ20170412101048337) and Guangdong Provincial Key Laboratory of Regional Immunity and Diseases (2019B030301009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Assuntos
Células Matadoras Naturais/imunologia , Tuberculose Latente/sangue , Transcriptoma , Tuberculose Pulmonar/sangue , Adolescente , Adulto , Biomarcadores/sangue , Feminino , Humanos , Tuberculose Latente/diagnóstico , Tuberculose Latente/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/imunologia
19.
mBio ; 10(4)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455656

RESUMO

Recruitment of monocytes to the infection site is critical for host resistance against Mycobacterium tuberculosis CD157 has a crucial role in neutrophil and monocyte transendothelial migration and adhesion, but its role in tuberculosis (TB) is unclear. Here, we show that both mRNA and protein levels of Cd157 are significantly increased during M. tuberculosis infection. Deficiency of Cd157 impaired host response to M. tuberculosis infection by increasing bacterial burden and inflammation in the lung in the murine TB model. In vitro experiments show that the bactericidal ability was compromised in Cd157 knockout (KO) macrophages, which was due to impaired M. tuberculosis-induced reactive oxygen species (ROS) production. We further reveal that CD157 interacts with TLR2 and PKCzeta and facilitates M. tuberculosis-induced ROS production in Cd157 KO macrophages, which resulted in enhanced M. tuberculosis killing. For the clinic aspect, we observe that the expression of CD157 decreases after effective anti-TB chemotherapy. CD157 is specifically increased in pleural fluid in tuberculous pleurisy patients compared to pneumonia and lung cancer patients. Interestingly, the levels of soluble CD157 (sCD157) correlate with human peripheral monocyte-derived macrophage bactericidal activity. Exogenous application of sCD157 could compensate for macrophage bactericidal ability and restore ROS production. In conclusion, we have identified a novel protective immune function of CD157 during M. tuberculosis infection via TLR2-dependent ROS production. Application of sCD157 might be an effective strategy for host-directed therapy against TB in those with insufficient CD157 production.IMPORTANCE Tuberculosis, a chronic bacterial disease caused by Mycobacterium tuberculosis, remains a major global health problem. CD157, a dual-function receptor and ß-NAD+-metabolizing ectoenzyme, promotes cell polarization, regulates chemotaxis induced through the high-affinity fMLP receptor, and controls transendothelial migration. The role of CD157 in TB pathogenesis remains unknown. In this study, we find that both mRNA and protein levels of CD157 are significantly increased in TB. Deficiency of CD157 impaired host defense against M. tuberculosis infection both in vivo and in vitro, which is mediated by an interaction among CD157, TLR2, and PKCzeta. This interaction facilitates M. tuberculosis-induced macrophagic ROS production, which enhances macrophage bactericidal activity. Interestingly, the sCD157 level in plasma is reversibly associated with MDM M. tuberculosis killing activity. By uncovering the role of CD157 in pathogenesis of TB for the first time, our work demonstrated that application of soluble CD157 might be an effective strategy for host-directed therapy against TB.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Mycobacterium tuberculosis/fisiologia , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Tuberculose/imunologia , ADP-Ribosil Ciclase/genética , Animais , Antígenos CD/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Inflamação/imunologia , Inflamação/patologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Monócitos/imunologia , Monócitos/microbiologia , Proteína Quinase C/genética , Receptor 2 Toll-Like/genética , Tuberculose/microbiologia , Tuberculose/patologia
20.
Front Microbiol ; 8: 8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144237

RESUMO

A novel, rapid and simple fluorescence resonance energy transfer (FRET) based Salmonella specific gene, invA, detection system was developed, in which quantum dots (QDs) and graphene oxide (GO) worked as fluorescent donor and quencher, respectively. By measuring the fluorescence intensity signal, the Salmonella specific invA gene could be sensitively and specifically detected with a limit of detection (LOD) of ∼4 nM of the invA gene in 20 min. The developed system has the potential to be used for Salmonella detection in food and environmental samples and further developed into a platform for detection of other bacterial pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA