Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 156, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331259

RESUMO

Despite advancements in diagnostic methods and therapeutic strategies, the mortality rate of hepatocellular carcinoma (HCC) remains as high as its incidence rate. Most liver cancers are detected in the advanced stages, when treatment options are limited. Small HCC is difficult to diagnose and is often overlooked by current imaging methods because of the complexity of the liver environment, especially in cirrhotic livers. In the present study, we developed a tumor "cruise missile", mesoporous Fe3O4-containing glucose oxidase-conjugated GPC3 peptide nanoparticles (FGP NPs). It was designed to enhance the accuracy of small HCC visualization to 85.7% using combined ultrasound/photoacoustic imaging in complex liver environment, which facilitated sequential catalytic targeted therapy for small HCC. In a carcinogen-induced mouse HCC model, FGP NPs could be used to accurately diagnose HCC in a liver cirrhosis background as well as distinguish HCC nodules from other abnormal liver nodules, such as cirrhosis nodules and necrotic nodules, by dynamic contrast-enhanced photoacoustic imaging. In a mouse xenograft HCC model, highly reactive oxygen species were formed by sequential catalytic reactions, which promoted HCC cell apoptosis, significantly increasing the survival of the model mice. The present study provides a basis for the precise detection and elimination of small HCCs in the complex liver environment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos
2.
J Nanobiotechnology ; 20(1): 48, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073918

RESUMO

Pro-tumoral and immunosuppressive M2-like tumor-associated macrophages (TAMs) contribute to tumor progression, recurrence and distal metastasis. However, current TAMs-modulating therapeutic strategies often encounter challenges including insufficient immune activation, weak antigen presentation ability and unsatisfactory antitumor immune performance. Herein, cyclic RGD peptide functionalized and manganese doped eumelanin-like nanocomposites (RMnMels) are reported for combined hyperthermia-immunotherapy against PC3 prostate cancer. The RMnMels could promote M2-to-M1 macrophage repolarization via scavenging multiple reactive oxygen species and remodeling the immunosuppressive tumor microenvironment. Following near-infrared light irradiation, RMnMels-mediated thermal ablation not only could destroy tumor cells directly, but also elicit the release of damage associated molecular patterns and tumor-associated antigens, provoking robust tumor immunogenicity and strong antitumor immune responses. The results showed that RMnMels could effectively scavenge reactive oxygen species and promote M2-to-M1 macrophage repolarization both in vitro and in vivo. Synergistically enhanced anti-tumor therapeutic efficacy was achieved following single administration of RMnMels plus single round of laser irradiation, evidenced by decreased primary tumor sizes and decreased number of distant liver metastatic nodules. The as-developed RMnMels may represent a simple and high-performance therapeutic nanoplatform for immunomodulation and enhanced antitumor immune responses.


Assuntos
Hipertermia Induzida , Nanocompostos , Neoplasias da Próstata , Biomimética , Humanos , Imunoterapia , Masculino , Manganês , Melaninas , Nanocompostos/uso terapêutico , Neoplasias da Próstata/terapia , Microambiente Tumoral
3.
Front Med ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907157

RESUMO

RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.

4.
Cancer Lett ; 523: 1-9, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34530049

RESUMO

Pancreatic cancer is one of the common malignant tumors of the digestive system, and its clinical treatment is still very challenging. Most of the pancreatic cancer chemotherapeutic drugs have poor plasma stability, low cell uptake efficiency, and are prone to developing drug resistance and toxic side effects. Besides, pancreatic cancer often has a dense extracellular matrix, which consists of collagens, hyaluronic acid, and other proteoglycans. Among them, hyaluronic acid is a key component of the dense matrix, which results in vascular compression and insufficient perfusion, and hinders the delivery of chemotherapeutic drugs. In this study, we explore using hyaluronidase in tumor-bearing mice to eliminate the hyaluronic acid barrier, to reduce blood vessel compression and reshape the tumor microenvironment. In addition, we evaluate using doxorubicin-loaded nanoprobes to improve the stability and local tumor-killing effect of the drug. The nanoprobes have the characteristics of near-infrared optical imaging, which are used to monitor the tumor size in real-time during the treatment process, and dynamically observe the tumor inhibitory effect. The results show that elimination of the hyaluronic acid barrier combined with the doxorubicin-loaded nanoprobes can greatly increase drug penetration into tumor tissue and improve the effectiveness of chemotherapy drugs. This study provides a novel strategy for the treatment of pancreatic cancer.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/farmacocinética , Hialuronoglucosaminidase/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Pressão Sanguínea/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanotubos de Carbono , Neoplasias Pancreáticas/diagnóstico por imagem , Fluxo Sanguíneo Regional/efeitos dos fármacos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA