Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(10): 3282-3289, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421230

RESUMO

X-ray radiation information storage, characterized by its ability to detect radiation with delayed readings, shows great promise in enabling reliable and readily accessible X-ray imaging and dosimetry in situations where conventional detectors may not be feasible. However, the lack of specific strategies to enhance the memory capability dramatically hampers its further development. Here, we present an effective anion substitution strategy to enhance the storage capability of NaLuF4:Tb3+ nanocrystals attributed to the increased concentration of trapping centers under X-ray irradiation. The stored radiation information can be read out as optical brightness via thermal, 980 nm laser, or mechanical stimulation, avoiding real-time measurement under ionizing radiation. Moreover, the radiation information can be maintained for more than 13 days, and the imaging resolution reaches 14.3 lp mm-1. These results demonstrate that anion substitution methods can effectively achieve high storage capability and broaden the application scope of X-ray information storage.

2.
Inorg Chem ; 62(40): 16485-16492, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738045

RESUMO

The current optical anticounterfeit strategies that rely on multimode luminescence in response to the photon or thermal stimuli have significant importance in the field of anticounterfeiting and information encryption. However, the dependence on light and heat sources might limit their flexibility in practical applications. In this work, Er3+ single-doped CaF2 phosphors that show multistimuli-responsive luminescence have been successfully prepared. The as-obtained CaF2:Er3+ phosphor exhibits green photoluminescence (PL) and color-tunable up-conversation (UC) luminescence from red to green due to the cross-relaxation of Er3+ ions. Additionally, as-obtained CaF2:Er3+ phosphors also display green mechano-luminescence behavior, which is induced by the contact electrification between the CaF2 particles and PDMS polymers, enabling the phosphor to flexibly respond to mechanical stimuli. Moreover, feasible anticounterfeiting schemes with the capability of multistimuli-responsive and flexible decryption have been constructed, further expanding the application of optical materials in the field of advanced anticounterfeiting and information encryption.

3.
Inorg Chem ; 60(18): 14467-14474, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34495661

RESUMO

In this work, a tunable luminescence color from yellow to orange of photoluminescence (PL), long persistent luminescence (LPL), and photostimulated luminescence (PSL) is successfully achieved in BaGa2O4:Bi3+ phosphors with the introduction of Sr2+ ions as secondary cations. It is confirmed that broad-band emissions located at 500 and 600 nm originate from the occupation of Bi3+ ions at different lattice sites in the BaGa2O4 host matrix. The replacement of Sr2+ for Ba2+ ions makes the emission red-shift from 600 to 650 nm; moreover, two additional emissions appeare at 743 and 810 nm due to the occupational preference of Bi3+ ions at Ga3+ sites. Furthermore, the doped Sr2+ ions promote the reconstruction of the trapping centers, which conduces to the fundamental improvement of the optical storage capacity behavior of Bi3+-doped phosphors. Our results clarify the dependence of the luminescence performance on the crystal sites of Bi3+ ions with fascinating broad-band emissions in the BaGa2O4:0.01Bi3+ host matrix and will benefit the design and exploration of Bi3+-doped solid solutions for optical storage applications.

4.
Inorg Chem ; 60(15): 11616-11625, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34284577

RESUMO

Wearable biosensing and food safety inspection devices with high thermal stability, high brightness, and broad near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) could accelerate the next-generation NIR light applications. In this work, NIR La3-xGdxGa5GeO14:Cr3+ (x = 0 to 1.5) phosphors were successfully fabricated by a high-temperature solid-state method. Here, by doping Gd3+ ions into the La3+ sites in the La3Ga5GeO14 matrix, a 7.9-fold increase in the photoluminescence (PL) intensity of the Cr3+ ions, as well as a remarkably broadened full width at half-maximum (FWHM) of the corresponding PL spectra, is achieved. The enhancements in the PL, PLE intensity, and FWHM are attributed to the suppression of the nonradiative transition process of Cr3+ when Gd3+ ions are doped into the host, which can be demonstrated by the decay curves. Moreover, the La1.5Gd1.5Ga5GeO14:Cr3+ phosphor displays an abnormally negative thermal phenomenon that the integral PL intensity reaches 131% of the initial intensity when the ambient temperature increases to 160 °C. Finally, the broadband NIR pc-LED was fabricated based on the as-explored La1.5Gd1.5Ga5GeO14:Cr3+ phosphors combined with a 460 nm chip, and the potential applications for the broadband NIR pc-LEDs were discussed in detail.

5.
ACS Appl Mater Interfaces ; 16(25): 32402-32410, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38875019

RESUMO

Optical signals with distinctive properties, such as contactless, fast response, and high identification, are harnessed to realize advanced anti-counterfeiting. However, the simultaneous attainment of multi-color, -temporal, and -modal luminescence performance remains a compelling and imperative pursuit. In our work, a temperature/photon-responded dynamic self-activated luminescence originating from nonstoichiometric Zn2GeO4 is developed with the modulation of intrinsic defects. The increased concentration of oxygen vacancies (VO••) contributes to an enhanced recombination of ZnGe″-VO••, ultimately improving the self-activated luminescence performance. Additionally, the photoluminescence (PL) color of the representative Zn2.2GeO4 sample changes from green to blue-white with the increased ultraviolet (UV) irradiation time. Concurrently, the emission color undergoes a variation from blue to green as the ambient temperature raises from 280 to 420 K. Remarkably, green long persistent luminescence (LPL) and photostimulated luminescence (PSL) behaviors are observed. Herein, this study elucidates a sophisticated anti-counterfeiting approach grounded in the dynamic luminescent attributes of nonstoichiometric Zn2GeO4, presenting a promising frontier for the evolution of anti-counterfeiting technologies.

6.
J Colloid Interface Sci ; 640: 719-726, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36898178

RESUMO

Complex and high-security-level anti-counterfeiting strategies with multiple luminescent modes are extremely critical for meeting the requirement of constantly developing information storage and information security. In this work, Tb3+ ions doped Sr3Y2Ge3O12 (SYGO) and Tb3+/Er3+ co-doped SYGO phosphors are successfully fabricated and are unitized for anti-counterfeiting and information encoding under distinct stimuli sources. The green photoluminescence (PL), long persistent luminescence (LPL), mechano-luminescence (ML), and photo-stimulated luminescence (PSL) behaviors are respectively observed under the stimuli of ultraviolet (UV), thermal disturbance, stress, and 980 nm diode laser. Based on the time-dependence of the filling and releasing rate of the carriers from the shallow traps, the dynamic information encryption strategy is proposed by simply changing the UV pre-irradiation time or shut-off time. Moreover, a tunable color from green to red is realized by prolonging the 980 nm laser irradiation time, which is attributed to the elaborate cooperation of the PSL and upconversion (UC) behaviors. The anti-counterfeiting method based on SYGO: Tb3+ and SYGO: Tb3+, Er3+ phosphors herein possess an extremely high-security level with attractive performance for designing advanced anti-counterfeiting technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA