Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7971): 738-742, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438533

RESUMO

Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies1,2. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition3,4. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing5-8. However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 ± 0.030 and 0.671 ± 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.

2.
Proc Natl Acad Sci U S A ; 121(24): e2311180121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830101

RESUMO

As a sustainable and promising approach of removing of nitrogen oxides (NOx), catalytic reduction of NOx with H2 is highly desirable with a precise understanding to the structure-activity relationship of supported catalysts. In particular, the dynamic evolution of support at microscopic scale may play a critical role in heterogeneous catalysis, however, identifying the in situ structural change of support under working condition with atomic precision and revealing its role in catalysis is still a grand challenge. Herein, we visually capture the surface lattice expansion of WO3-x support in Pt-WO3-x catalyst induced by NO in the exemplified reduction of NO with H2 using in situ transmission electron microscopy and first reveal its important role in enhancing catalysis. We find that NO can adsorb on the oxygen vacancy sites of WO3-x and favorably induce the reversible stretching of W-O-W bonds during the reaction, which can reduce the adsorption energy of NO on Pt4 centers and the energy barrier of the rate-determining step. The comprehensive studies reveal that lattice expansion of WO3-x support can tune the catalytic performance of Pt-WO3-x catalyst, leading to 20% catalytic activity enhancement for the exemplified reduction of NO with H2. This work reveals that the lattice expansion of defective support can tune and optimize the catalytic performance at the atomic scale.

3.
Proc Natl Acad Sci U S A ; 120(25): e2301439120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307482

RESUMO

Catalysts with a refined electronic structure are highly desirable for promoting the oxygen evolution reaction (OER) kinetics and reduce the charge overpotentials for lithium-oxygen (Li-O2) batteries. However, bridging the orbital interactions inside the catalyst with external orbital coupling between catalysts and intermediates for reinforcing OER catalytic activities remains a grand challenge. Herein, we report a cascaded orbital-oriented hybridization, namely alloying hybridization in intermetallic Pd3Pb followed by intermolecular orbital hybridization between low-energy Pd atom and reaction intermediates, for greatly enhancing the OER electrocatalytic activity in Li-O2 battery. The oriented orbital hybridization in two axes between Pb and Pd first lowers the d band energy level of Pd atoms in the intermetallic Pd3Pb; during the charging process, the low-lying 4dxz/yz and 4dz2 orbital of the Pd further hybridizes with 2π* and 5σ orbitals of lithium superoxide (LiO2) (key reaction intermediate), eventually leading to lower energy levels of antibonding and, thus, weakened orbital interaction toward LiO2. As a consequence, the cascaded orbital-oriented hybridization in intermetallic Pd3Pb considerably decreases the activation energy and accelerates the OER kinetics. The Pd3Pb-based Li-O2 batteries exhibit a low OER overpotential of 0.45 V and superior cycle stability of 175 cycles at a fixed capacity of 1,000 mAh g-1, which is among the best in the reported catalysts. The present work opens up a way for designing sophisticated Li-O2 batteries at the orbital level.

4.
Proc Natl Acad Sci U S A ; 120(21): e2220315120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186847

RESUMO

The unsatisfactory catalytic activity of nanozymes owing to their inefficient electron transfer (ET) is the major challenge in biomimetic catalysis-related biomedical applications. Inspired by the photoelectron transfers in natural photoenzymes, we herein report a photonanozyme of single-atom Ru anchored on metal-organic frameworks (UiO-67-Ru) for achieving photoenhanced peroxidase (POD)-like activity. We demonstrate that the atomically dispersed Ru sites can realize high photoelectric conversion efficiency, superior POD-like activity (7.0-fold photoactivity enhancement relative to that of UiO-67), and good catalytic specificity. Both in situ experiments and theoretical calculations reveal that photoelectrons follow the cofactor-mediated ET process of enzymes to promote the production of active intermediates and the release of products, demonstrating more favorable thermodynamics and kinetics in H2O2 reduction. Taking advantage of the unique interaction of the Zr-O-P bond, we establish a UiO-67-Ru-based immunoassay platform for the photoenhanced detection of organophosphorus pesticides.


Assuntos
Peróxido de Hidrogênio , Praguicidas , Biomimética , Compostos Organofosforados , Oxirredução , Catálise
5.
Nat Mater ; 23(9): 1259-1267, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38769206

RESUMO

Structurally ordered L10-PtM (M = Fe, Co, Ni and so on) intermetallic nanocrystals, benefiting from the chemically ordered structure and higher stability, are one of the best electrocatalysts used for fuel cells. However, their practical development is greatly plagued by the challenge that the high-temperature (>600 °C) annealing treatment necessary for realizing the ordered structure usually leads to severe particle sintering, morphology change and low ordering degree, which makes it very difficult for the gram-scale preparation of desirable PtM intermetallic nanocrystals with high Pt content for practical fuel cell applications. Here we report a new concept involving the low-melting-point-metal (M' = Sn, Ga, In)-induced bond strength weakening strategy to reduce Ea and promote the ordering process of PtM (M = Ni, Co, Fe, Cu and Zn) alloy catalysts for a higher ordering degree. We demonstrate that the introduction of M' can reduce the ordering temperature to extremely low temperatures (≤450 °C) and thus enable the preparation of high-Pt-content (≥40 wt%) L10-Pt-M-M' intermetallic nanocrystals as well as ten-gram-scale production. X-ray spectroscopy studies, in situ electron microscopy and theoretical calculations reveal the fundamental mechanism of the Sn-facilitated ordering process at low temperatures, which involves weakened bond strength and consequently reduced Ea via Sn doping, the formation and fast diffusion of low-coordinated surface free atoms, and subsequent L10 nucleation. The developed L10-Ga-PtNi/C catalysts display outstanding performance in H2-air fuel cells under both light- and heavy-duty vehicle conditions. Under the latter condition, the 40% L10-Pt50Ni35Ga15/C catalyst delivers a high current density of 1.67 A cm-2 at 0.7 V and retains 80% of the current density after extended 90,000 cycles, which exceeds the United States Department of Energy performance metrics and represents among the best cathodic electrocatalysts for practical proton-exchange membrane fuel cells.

6.
Chem Rev ; 123(22): 12507-12593, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37910391

RESUMO

Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.

7.
Nature ; 574(7776): 81-85, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554968

RESUMO

The efficient interconversion of chemicals and electricity through electrocatalytic processes is central to many renewable-energy initiatives. The sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER)1-4 has long posed one of the biggest challenges in this field, and electrocatalysts based on expensive platinum-group metals are often required to improve the activity and durability of these reactions. The use of alloying5-7, surface strain8-11 and optimized coordination environments12 has resulted in platinum-based nanocrystals that enable very high ORR activities in acidic media; however, improving the activity of this reaction in alkaline environments remains challenging because of the difficulty in achieving optimized oxygen binding strength on platinum-group metals in the presence of hydroxide. Here we show that PdMo bimetallene-a palladium-molybdenum alloy in the form of a highly curved and sub-nanometre-thick metal nanosheet-is an efficient and stable electrocatalyst for the ORR and the OER in alkaline electrolytes, and shows promising performance as a cathode in Zn-air and Li-air batteries. The thin-sheet structure of PdMo bimetallene enables a large electrochemically active surface area (138.7 square metres per gram of palladium) as well as high atomic utilization, resulting in a mass activity towards the ORR of 16.37 amperes per milligram of palladium at 0.9 volts versus the reversible hydrogen electrode in alkaline electrolytes. This mass activity is 78 times and 327 times higher than those of commercial Pt/C and Pd/C catalysts, respectively, and shows little decay after 30,000 potential cycles. Density functional theory calculations reveal that the alloying effect, the strain effect due to the curved geometry, and the quantum size effect due to the thinness of the sheets tune the electronic structure of the system for optimized oxygen binding. Given the properties and the structure-activity relationships of PdMo metallene, we suggest that other metallene materials could show great promise in energy electrocatalysis.

8.
Nano Lett ; 24(5): 1602-1610, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286023

RESUMO

Metallene materials with atomic thicknesses are receiving increasing attention in electrocatalysis due to ultrahigh surface areas and distinctive surface strain. However, the continuous strain regulation of metallene remains a grand challenge. Herein, taking advantage of autocatalytic reduction of Cu2+ on biaxially strained, carbon-intercalated Ir metallene, we achieve control over the carbon extraction kinetics, enabling fine regulation of carbon intercalation concentration and continuous tuning of (111) in-plane (-2.0%-2.6%) and interplanar (3.5%-8.8%) strains over unprecedentedly wide ranges. Electrocatalysis measurements reveal the strain-dependent activity toward hydrogen evolution reaction (HER), where weakly strained Ir metallene (w-Ir metallene) with the smallest lattice constant presents the highest mass activity of 2.89 A mg-1Ir at -0.02 V vs reversible hydrogen electrode (RHE). Theoretical calculations validated the pivotal role of lattice compression in optimizing H binding on carbon-intercalated Ir metallene surfaces by downshifting the d-band center, further highlighting the significance of strain engineering for boosted electrocatalysis.

9.
J Am Chem Soc ; 146(28): 19327-19336, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976776

RESUMO

An in situ formed IrOx (x ≤ 2) layer driven by anodic bias serves as the essential active site of Ir-based materials for oxygen evolution reaction (OER) electrocatalysis. Once being confined to atomic thickness, such an IrOx layer possesses both a favorable ligand effect and maximized active Ir sites with a lower O-coordination number. However, limited by a poor understanding of surface reconstruction dynamics, obtaining atomic layers of IrOx remains experimentally challenging. Herein, we report an idea of material design using intermetallic IrVMn nanoparticles to induce in situ formation of an ultrathin IrOx layer (O-IrVMn/IrOx) to enable the ligand effect for achieving superior OER electrocatalysis. Theoretical calculations predict that a strong electronic interaction originating from an orderly atomic arrangement can effectively hamper the excessive leaching of transition metals, minimizing vacancies for oxygen coordination. Linear X-ray absorption near edge spectra analysis, extended X-ray absorption fine structure fitting outcomes, and X-ray photoelectron spectroscopy collectively confirm that Ir is present in lower oxidation states in O-IrVMn/IrOx due to the presence of unsaturated O-coordination. Consequently, the O-IrVMn/IrOx delivers excellent acidic OER performances with an overpotential of only 279 mV at 10 mA cm-2 and a high mass activity of 2.3 A mg-1 at 1.53 V (vs RHE), exceeding most Ir-based catalysts reported. Moreover, O-IrVMn/IrOx also showed excellent catalytic stability with only 0.05 at. % Ir dissolution under electrochemical oxidation, much lower than that of disordered D-IrVMn/IrOx (0.20 at. %). Density functional theory calculations unravel that the intensified ligand effect optimizes the adsorption energies of multiple intermediates involved in the OER and stabilizes the as-formed catalytic IrOx layer.

10.
J Am Chem Soc ; 146(14): 10023-10031, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554097

RESUMO

Single-atom nanozyme-based catalytic therapy is of great interest in the field of tumor catalytic therapy; however, their development suffers from the low affinity of nanozymes to the substrates (H2O2 or O2), leading to deficient catalytic activity in the tumor microenvironment. Herein, we report a new strategy for precisely tuning the d-band center of dual-atomic sites to enhance the affinity of metal atomic sites and substrates on a class of edge-rich N-doped porous carbon dual-atomic sites Fe-Mn (Fe1Mn1-NCe) for greatly boosting multiple-enzyme-like catalytic activities. The as-made Fe1Mn1-NCe achieved a much higher catalytic efficiency (Kcat/Km = 4.01 × 105 S-1·M-1) than Fe1-NCe (Kcat/Km = 2.41 × 104 S-1·M-1) with an outstanding stability of over 90% activity retention after 1 year, which is the best among the reported dual-atom nanozymes. Theoretical calculations reveal that the synergetic effect of Mn upshifts the d-band center of Fe from -1.113 to -0.564 eV and enhances the adsorption capacity for the substrate, thus accelerating the dissociation of H2O2 and weakening the O-O bond on O2. We further demonstrated that the superior enzyme-like catalytic activity of Fe1Mn1-NCe combined with photothermal therapy could effectively inhibit tumor growth in vivo, with an inhibition rate of up to 95.74%, which is the highest value among the dual-atom artificial enzyme therapies reported so far.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Adsorção , Carbono , Catálise , Microambiente Tumoral
11.
J Am Chem Soc ; 146(14): 9721-9727, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556809

RESUMO

The volumetric density of the metal atomic site is decisive to the operating efficiency of the photosynthetic nanoreactor, yet its rational design and synthesis remain a grand challenge. Herein, we report a shell-regulating approach to enhance the volumetric density of Co atomic sites onto/into multishell ZnxCd1-xS for greatly improving CO2 photoreduction activity. We first establish a quantitative relation between the number of shell layers, specific surface areas, and volumetric density of atomic sites on multishell ZnxCd1-xS and conclude a positive relation between photosynthetic performance and the number of shell layers. The triple-shell ZnxCd1-xS-Co1 achieves the highest CO yield rate of 7629.7 µmol g-1 h-1, superior to those of the double-shell ZnxCd1-xS-Co1 (5882.2 µmol g-1 h-1) and single-shell ZnxCd1-xS-Co1 (4724.2 µmol g-1 h-1). Density functional theory calculations suggest that high-density Co atomic sites can promote the mobility of photogenerated electrons and enhance the adsorption of Co(bpy)32+ to increase CO2 activation (CO2 → CO2* → COOH* → CO* → CO) via the S-Co-bpy interaction, thereby enhancing the efficiency of photocatalytic CO2 reduction.

12.
J Am Chem Soc ; 146(7): 4433-4443, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329948

RESUMO

Potassium-sulfur (K-S) batteries are severely limited by the sluggish kinetics of the solid-phase conversion of K2S3/K2S2 to K2S, the rate-determining and performance-governing step, which urgently requires a cathode with facilitated sulfur accommodation and improved catalytic efficiency. To this end, we leverage the orbital-coupling approach and herein report a strong d-π coupling catalytic configuration of single-atom Co anchored between two alkynyls of graphdiyne (Co-GDY). The d-π orbital coupling of the Co-C4 moiety fully redistributes electrons two-dimensionally across the GDY, and as a result, drastically accelerates the solid-phase K2S3/K2S2 to K2S conversion and enhances the adsorption of sulfur species. Applied as the cathode, the S/Co-GDY delivered a record-high rate performance of 496.0 mAh g-1 at 5 A g-1 in K-S batteries. In situ and ex situ characterizations coupling density functional theory (DFT) calculations rationalize how the strong d-π orbital coupling of Co-C4 configuration promotes the reversible solid-state transformation kinetics of potassium polysulfide for high-performance K-S batteries.

13.
J Am Chem Soc ; 146(4): 2339-2344, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237055

RESUMO

Li-O2 batteries (LOBs) are considered as one of the most promising energy storage devices due to their ultrahigh theoretical energy density, yet they face the critical issues of sluggish cathode redox kinetics during the discharge and charge processes. Here we report a direct synthetic strategy to fabricate a single-atom alloy catalyst in which single-atom Pt is precisely dispersed in ultrathin Pd hexagonal nanoplates (Pt1Pd). The LOB with the Pt1Pd cathode demonstrates an ultralow overpotential of 0.69 V at 0.5 A g-1 and negligible activity loss over 600 h. Density functional theory calculations show that Pt1Pd can promote the activation of the O2/Li2O2 redox couple due to the electron localization caused by the single Pt atom, thereby lowering the energy barriers for the oxygen reduction and oxygen evolution reactions. Our strategy for designing single-atom alloy cathodic catalysts can address the sluggish oxygen redox kinetics in LOBs and other energy storage/conversion devices.

14.
Small ; 20(33): e2400963, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38686696

RESUMO

Biomolecule-functionalized nanoparticles represent a type of promising biomaterials in biomedical applications owing to their excellent biocompatibility and versatility. DNA-based reactions on nanoparticles have enabled emerging applications including intelligent biosensors, drug delivery, and biomimetic devices. Among the reactions, strand hybridization is the critical step to control the sensitivity and specificity of biosensing, and the efficiency of drug delivery. However, a comprehensive understanding of DNA hybridization on nanoparticles is still lacking, which may differ from the process in homogeneous solutions. To address this limitation, coarse-grained model-based molecular dynamic simulation is harnessed to disclose the critical factors involved in intermolecular hybridization. Based on simulation guidance, DNA walker-based smart theranostic platform (DWTP) based on "on-particle" hybridization is developed, showing excellent consistency with simulation. DWTP is successfully applied for highly sensitive miRNA 21 detection and tumor-specific miRNA 21 imaging, driven by tumor-endogenous APE 1 enzyme. It enables the precise release of antisense oligonucleotide triggered by tumor-endogenous dual-switch miRNA 21 and APE 1, facilitating effective gene silencing therapy with high biosafety. The simulation of "on-particle" DNA hybridization has improved the corresponding biosensing performance and the release efficiency of therapeutic agents, representing a conceptually new approach for DNA-based device design.


Assuntos
DNA , MicroRNAs , Nanomedicina Teranóstica , DNA/química , Nanomedicina Teranóstica/métodos , Humanos , Hibridização de Ácido Nucleico , Nanopartículas/química , Simulação de Dinâmica Molecular , Técnicas Biossensoriais/métodos
15.
Nano Lett ; 23(22): 10600-10607, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37942960

RESUMO

Optimizing the local coordination environment of metal centers in metal-organic frameworks (MOFs) is crucial yet challenging for regulating the overpotential of lithium-oxygen (Li-O2) batteries. Herein, we report the synthesis of a class of PbO7 nodes in a single crystal MOF (naphthalene-lead-MOF, known as Na-Pb-MOF) to significantly enhance the kinetics of both discharge and charge processes. Compared to the PbO6 node in the single-crystal tetramethoxy-lead-MOF (4OMe-Pb-MOF), the bond length between Pb and O in the PbO7 node of Na-Pb-MOF increases, resulting in weaker Pb 5d-O 2p orbital coupling, which optimizes the adsorption interaction toward intermediates, and thereby promotes the rate-determining steps of both the reduction of LiO2 to Li2O2 and the oxidation of LiO2 to O2 for reducing the activation energy of the overall reaction. Consequently, Li-O2 batteries based on Na-Pb-MOF electrocatalysts exhibit a low total charge-discharge overpotential of 0.52 V and an excellent cycle life of 140 cycles.

16.
Nano Lett ; 23(1): 267-275, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580489

RESUMO

Great efforts have been made to expand the application fields of nanozymes, which puts forward requirements for nanozymes with both superior catalytic activity and specificity. Herein, we reported the high-indexed intermetallic Pt3Sn (H-Pt3Sn) with high peroxidase-like activity and specificity. The resultant H-Pt3Sn exhibits a specific activity of 345.3 U/mg, which is 1.82 times higher than Pt. Moreover, H-Pt3Sn possesses negligible oxidase-like and catalase-like activities, achieving superior catalytic specificity toward H2O2 activation. Experimental and theoretical calculations reveal both the splitting energy for adsorbed H2O2 and the energy barrier for the rate-determining step of H-Pt3Sn are significantly decreased compared with Pt3Sn and Pt. Finally, a nanozyme-linked immunosorbent assay is successfully developed, achieving the sensitive and accurate colorimetric detection for carcinoembryonic antigen with a low detection limit of 0.49 pg/mL and showing practical feasibility in serum sample detection.


Assuntos
Peróxido de Hidrogênio , Peroxidase , Peroxidases , Imunoensaio , Colorimetria
17.
Angew Chem Int Ed Engl ; 63(13): e202314876, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305641

RESUMO

The carbonate electrolyte chemistry is a primary determinant for the development of high-voltage lithium metal batteries (LMBs). Unfortunately, their implementation is greatly plagued by sluggish electrode interfacial dynamics and insufficient electrolyte thermodynamic stability. Herein, lithium trifluoroacetate-lithium nitrate (LiTFA-LiNO3 ) dual-salt additive-reinforced carbonate electrolyte (LTFAN) is proposed for stabilizing high-voltage LMBs. We reveal that 1) the in situ generated inorganic-rich electrode-electrolyte interphase (EEI) enables rapid interfacial dynamics, 2) TFA- preferentially interacts with moisture over PF6 - to strengthen the moisture tolerance of designed electrolyte, and 3) NO3 - is found to be noticeably enriched at the cathode interface on charging, thus constructing Li+ -enriched, solvent-coordinated, thermodynamically favorable electric double layer (EDL). The superior moisture tolerance of LTFAN and the thermodynamically stable EDL constructed at cathode interface play a decisive role in upgrading the compatibility of carbonate electrolyte with high-voltage cathode. The LMBs with LTFAN realize 4.3 V-NCM523/4.4 V-NCM622 superior cycling reversibility and excellent rate capability, which is the leading level of documented records for carbonate electrode.

18.
Angew Chem Int Ed Engl ; 63(15): e202319798, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38353370

RESUMO

Direct saline (seawater) electrolysis is a well-recognized system to generate active chlorine species for the chloride-mediated electrosynthesis, environmental remediation and sterilization over the past few decades. However, the large energy consumption originated from the high cell voltage of traditional direct saline electrolysis system, greatly restricts its practical application. Here, we report an acid-saline hybrid electrolysis system for energy-saving co-electrosynthesis of active chlorine and H2. We demonstrate that this system just requires a low cell voltage of 1.59 V to attain 10 mA cm-2 with a large energy consumption decrease of 27.7 % compared to direct saline electrolysis system (2.20 V). We further demonstrate that such acid-saline hybrid electrolysis system could be extended to realize energy-saving and sustainable seawater electrolysis. The acidified seawater in this system can absolutely avoid the formation of Ca/Mg-based sediments that always form in the seawater electrolysis system. We also prove that this system in the half-flow mode can realize real-time preparation of active chlorine used for sterilization and pea sprout production.

19.
Angew Chem Int Ed Engl ; 63(11): e202319108, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38196079

RESUMO

Engineering isolated metal sites resembling the primary coordination sphere of metallocofactors enables atomically dispersed materials as promising nanozymes. However, most existing nanozymes primarily focus on replicating specific metallocofactors while neglecting other supporting cofactors within active pockets, leading to reduced electron transfer (ET) efficiency and thus inferior catalytic performances. Herein, we report a metal-organic framework UiO-67 nanozyme with atomically dispersed iron sites, which involves multiple tailored enzyme-like nanocofactors that synergistically drive the ET process for enhanced peroxidase-like catalysis. Among them, the linker-coupled atomic iron site plays a critical role in substrate activation, while bare linkers and zirconia nodes facilitate the ET efficiency of intermediates. The synergy of three nanocofactors results in a 4.29-fold enhancement compared with the single effort of isolated metal site-based nanocofactor, holding promise in immunoassay for sensitive detection of chlorpyrifos. This finding opens a new way for designing high-performance nanozymes by harmonizing various nanocofactors at the atomic and molecular scale.


Assuntos
Oxirredutases , Peroxidase , Peroxidases , Ferro/química , Catálise
20.
Angew Chem Int Ed Engl ; 63(7): e202317987, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38152839

RESUMO

Platinum metal (PtM, M=Ni, Fe, Co) alloys catalysts show high oxygen reduction reaction (ORR) activity due to their well-known strain and ligand effects. However, these PtM alloys usually suffer from a deficient ORR durability in acidic environment as the alloyed metal is prone to be dissolved due to its high electronegativity. Herein, we report a new class of PtMn alloy nanodendrite catalyst with low-electronegativity Mn-contraction for boosting the oxygen reduction durability of fuel cells. The moderate strain in PtMn, induced by Mn contraction, yields optimal oxygen reduction activity at 0.53 A mg-1 at 0.9 V versus reversible hydrogen electrode (RHE). Most importantly, we show that relative to well-known high-electronegativity Ni-based Pt alloy counterpart, the PtMn nanodendrite catalyst experiences less transition metals' dissolution in acidic solution and achieves an outstanding mass activity retention of 96 % after 10,000 degradation cycles. Density functional theory calculation reveals that PtMn alloys are thermodynamically more stable than PtNi alloys in terms of formation enthalpy and cohesive energy. The PtMn nanodendrite-based membrane electrode assembly delivers an outstanding peak power density of 1.36 W cm-2 at a low Pt loading and high-performance retention over 50 h operations at 0.6 V in H2 -O2 hydrogen fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA