Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Physiol Mol Biol Plants ; 30(1): 109-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38435856

RESUMO

Auxin-induced callus formation was largely dependent on the function of Lateral Organ Boundaries Domain (LBD) family transcription factors. We previously revealed that two IGMT (Indole glucosinolate oxy-methyl transferase) genes, IGMT2 and IGMT3, may be involved in the callus formation process as potential target genes of LBD29. Overexpression of the IGMT genes induces spontaneous callus formation. However, the details of the IGMT involvement in callus formation process were not well studied. IGMT1-4, but not IGMT5, are targeted and induced by LBD29 during the early stage of callus formation. Cell membrane and nucleus localized IGMT3 was mainly expressed in the elongation and maturation zones tissues of the primary root and lateral root, which could be further accumulated after CIM treatment. The igmts quadruple mutant, which obtained by CRISPR/Cas9 technology, exhibits a phenotype of attenuated callus formation. Enhanced indole glucosinolate anabolic pathway caused by IGMT1-4 overexpression promotes callus formation. In addition, the IGMT genes were involved in the reactive oxygen species homeostasis, which could be responsible for its role on callus formation. This study provides novel insights into the role of IGMTs gene-mediated callus formation. Activation of the Indole glucosinolate anabolic pathway is an inducing factor for plant callus initiation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01409-2.

2.
BMC Plant Biol ; 22(1): 547, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443672

RESUMO

BACKGROUND: Foxtail millet (Setaria italica L.) is a millet species with high tolerance to stressful environments. Plant non-specific lipid transfer proteins (nsLTPs) are a kind of small, basic proteins involved in many biological processes. So far, the genome of S. italica has been fully sequenced, and a comprehensive understanding of the evolution and expression of the nsLTP family is still lacking in foxtail millet. RESULTS: Forty-five nsLTP genes were identified in S. italica and clustered into 5 subfamilies except three single genes (SinsLTP38, SinsLTP7, and SinsLTP44). The proportion of SinsLTPs was different in each subfamily, and members within the same subgroup shared conserved exon-intron structures. Besides, 5 SinsLTP duplication events were investigated. Both tandem and segmental duplication contributed to nsLTP expansion in S. italica, and the duplicated SinsLTPs had mainly undergone purifying selection pressure, which suggested that the function of the duplicated SinsLTPs might not diverge much. Moreover, we identified the nsLTP members in 5 other monocots, and 41, 13, 10, 4, and 1 orthologous gene pairs were identified between S. italica and S. viridis, S. bicolor, Z. mays, O. sativa, and B. distachyon, respectively. The functional divergence within the nsLTP orthologous genes might be limited. In addition, the tissue-specific expression patterns of the SinsLTPs were investigated, and the expression profiles of the SinsLTPs in response to abiotic stress were analyzed, all the 10 selected SinsLTPs were responsive to drought, salt, and cold stress. Among the selected SinsLTPs, 2 paired duplicated genes shared almost equivalent expression profiles, suggesting that these duplicated genes might retain some essential functions during subsequent evolution. CONCLUSIONS: The present study provided the first systematic analysis for the phylogenetic classification, conserved domain and gene structure, expansion pattern, and expression profile of the nsLTP family in S. italica. These findings could pave a way for further comparative genomic and evolution analysis of nsLTP family in foxtail millet and related monocots, and lay the foundation for the functional analysis of the nsLTPs in S. italica.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Filogenia , Evolução Molecular , Genes Duplicados
3.
BMC Plant Biol ; 20(1): 405, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873228

RESUMO

BACKGROUND: Chenopodium quinoa Willd. (quinoa) is a pseudocereal crop of the Amaranthaceae family and represents a promising species with the nutritional content and high tolerance to stressful environments, such as soils affected by high salinity. The basic leucine zipper (bZIP) transcription factor represents exclusively in eukaryotes and can be related to many biological processes. So far, the genomes of quinoa and 3 other Amaranthaceae crops (Spinacia oleracea, Beta vulgaris, and Amaranthus hypochondriacus) have been fully sequenced. However, information about the bZIPs in these Amaranthaceae species is limited, and genome-wide analysis of the bZIP family is lacking in quinoa. RESULTS: We identified 94 bZIPs in quinoa (named as CqbZIP1-CqbZIP94). All the CqbZIPs were phylogenetically splitted into 12 distinct subfamilies. The proportion of CqbZIPs was different in each subfamily, and members within the same subgroup shared conserved exon-intron structures and protein motifs. Besides, 32 duplicated CqbZIP gene pairs were investigated, and the duplicated CqbZIPs had mainly undergone purifying selection pressure, which suggested that the functions of the duplicated CqbZIPs might not diverge much. Moreover, we identified the bZIP members in 3 other Amaranthaceae species, and 41, 32, and 16 orthologous gene pairs were identified between quinoa and S. oleracea, B. vulgaris, and A. hypochondriacus, respectively. Among them, most were a single copy being present in S. oleracea, B. vulgaris, and A. hypochondriacus, and two copies being present in allotetraploid quinoa. The function divergence within the bZIP orthologous genes might be limited. Additionally, 11 selected CqbZIPs had specific spatial expression patterns, and 6 of 11 CqbZIPs were up-regulated in response to salt stress. Among the selected CqbZIPs, 3 of 4 duplicated gene pairs shared similar expression patterns, suggesting that these duplicated genes might retain some essential functions during subsequent evolution. CONCLUSIONS: The present study provided the first systematic analysis for the phylogenetic classification, motif and gene structure, expansion pattern, and expression profile of the bZIP family in quinoa. Our results would lay an important foundation for functional and evolutionary analysis of CqbZIPs, and provide promising candidate genes for further investigation in tissue specificity and their functional involvement in quinoa's resistance to salt stress.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Chenopodium quinoa/genética , Evolução Molecular , Expressão Gênica , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Estudo de Associação Genômica Ampla , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
4.
Genet Mol Biol ; 43(1): e20180295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31429858

RESUMO

DNA methylation plays an important role in plant growth and development, gene expression regulation, and maintenance of genome stability. However, only little information regarding stress-related DNA methyltransferases (MTases) genes is available in tomato. Here, we report the analysis of nine tomato MTases, which were categorized into four known subfamilies. Structural analysis suggested their DNA methylase domains are highly conserved, whereas the N-terminals are divergent. Tissue-specific analysis of these MTase genes revealed that SlCMT2, SlCMT3, and SlDRM5 were expressed higher in young leaves, while SlMET1, SlCMT4, SlDRM7, and SlDRM8 were highly expressed in immature green fruit, and their expression declined continuously with further fruit development. In contrast, SlMETL was highly expressed in ripening fruit and displayed an up-regulated tendency during fruit development. In addition, the expression of SlMET1 in the ripening of mutant rin and Nr tomatoes is significantly higher compared to wild-type tomato, suggesting that SlMET1 was negatively regulated by the ethylene signal and ripening regulator MADS-RIN. Furthermore, expression analysis under abiotic stresses revealed that these MTase genes were stress-responsive and may function diversely in different stress conditions. Overall, our results provide valuable information for exploring the regulation of tomato fruit ripening and response to abiotic stress through DNA methylation.

5.
Int J Mol Sci ; 20(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216621

RESUMO

MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mß, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon-intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family.


Assuntos
Genoma de Planta , Genômica , Proteínas de Domínio MADS/genética , Família Multigênica , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Motivos de Aminoácidos , Mapeamento Cromossômico , Sequência Conservada , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Genômica/métodos , Solanum lycopersicum/metabolismo , Proteínas de Domínio MADS/metabolismo , Especificidade de Órgãos , Filogenia , Desenvolvimento Vegetal/genética , Fatores de Transcrição/metabolismo
6.
Plant Cell Rep ; 36(6): 959-969, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28352968

RESUMO

KEY MESSAGE: Silencing SlAGL6 in tomato leads to fused sepal and green petal by influencing the expression of A-, B-class genes. AGAMOUS-LIKE6 (AGL6) lineage is an important clade MADS-box transcription factor and plays essential roles in various developmental programs especially in flower meristem and floral organ development. Here, we isolated a tomato AGL6 lineage gene SlAGL6 and successfully obtained several RNA interference (RNAi) lines. Silencing SlAGL6 led to abnormal fused sepals and light green petals with smaller size. The total chlorophyll content in transgenic petals increased and the morphology of epidermis cells altered. Further analysis showed that A-class gene MACROCALYX (MC) participating in sepal development and a NAC-domain gene GOBLET involving in boundary establishment were down-regulated in transgenic lines. In transgenic petals, two chlorophyll synthesis genes, Golden2-like1 (SlGLK1) and Golden2-like2 (SlGLK2), two photosystem-related genes, ribulose bisphosphate carboxylase small chain 3B (SlrbcS3B) and chlorophyll a/b-binding protein 7 (SlCab-7) were induced and three B-class genes TM6, TAP3 and SlGLO1 were repressed. These results suggest that SlAGL6 involves in tomato sepal and petal development.


Assuntos
Flores/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Hortic Res ; 9: uhac081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769614

RESUMO

DNA methylation participates widely in the regulation of gene expression in plants. To date, the regulation and function of DNA methylation is still unknown in tomato plants. Here, we generated SlCMT4 mutants using the CRISPR-Cas9 gene editing system. We observed severe developmental defects in CRISPR-Cas9-mediated SlCMT4 mutants, including small and thick leaves, increased lateral buds, defective stamens and pistils, small fruit size with reduced setting rate, and defective seed development. The alterations at hormonal levels (IAA, tZR, strigol) were consistent with the multibranching phenotype in SlCMT4 mutant plants. CRISPR-Cas9-mediated knockout of SlCMT4 induced the expression of two pollen-specific genes (PMEI and PRALF) that suppressed the development of pollen wall and pollen tube elongation, which is responsible for irregular and defective pollen. The small-sized fruit phenotype is probably associated with upregulated expression of the IMA gene and reduced seeds in the mutant lines. Furthermore, we performed whole-genome bisulfite sequencing (WGBS) of fruits and found that SlCMT4 knockout reduced genome-wide cytosine methylation. A reduction of methylation was also observed in a 2-kp region of the IMA and LOXB promoters in the SlCMT4-mutant fruits, indicating that the hypermethylation status of the CHH context is critical for the inhibition of IMA and LOXB promoter activity. Our results show that SlCMT4 is required for normal development of tomato vegetative and reproductive organs. This study illuminates the function of SlCMT4 and sheds light on the molecular regulatory mechanism of tomato plant architecture and fruit development and ripening.

8.
Plant Physiol Biochem ; 162: 447-455, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33740683

RESUMO

The nano-carbon graphene has unique structural and physicochemical properties, which are conducive to various biomedical applications. We assessed the effect of graphene oxide (GO) on tomato plants at the seedling and mature stages in terms of morphological and biochemical indices. GO treatment significantly improved the shoot/stem growth of tomato in a dose-dependent manner by increasing the cortical cells number, cross-sectional area, diameter and vascular-column area. In addition, GO also promoted the morphological development of the root system and increased biomass accumulation. The surface area of root tips and hairs of tomato plants treated with 50 mg/L and 100 mg/L GO were significantly greater compared to the untreated control. At the molecular level, GO induced the expression of root development-related genes (SlExt1 and LeCTR1) and inhibited the auxin-responsive gene (SlIAA3). However, 50 mg/L and 100 mg/L GO significantly increased the root auxin content, which in turn increased the number of fruits and hastened fruit ripening compared to the control plants. Taken together, GO can improve the tomato growth when used at the appropriate concentration, and is a promising nano-carbon material for agricultural use.


Assuntos
Grafite , Solanum lycopersicum , Frutas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos
9.
Genes (Basel) ; 10(7)2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262002

RESUMO

The NAC (NAM, ATAF, and CUC) family is one of the largest families of plant-specific transcription factors. It is involved in many plant growth and development processes, as well as abiotic/biotic stress responses. So far, little is known about the NAC family in Chenopodium quinoa. In the present study, a total of 90 NACs were identified in quinoa (named as CqNAC1-CqNAC90) and phylogenetically divided into 14 distinct subfamilies. Different subfamilies showed diversities in gene proportions, exon-intron structures, and motif compositions. In addition, 28 CqNAC duplication events were investigated, and a strong subfamily preference was found during the NAC expansion in quinoa, indicating that the duplication event was not random across NAC subfamilies during quinoa evolution. Moreover, the analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios suggested that the duplicated CqNACs might have mainly experienced purifying selection pressure with limited functional divergence. Additionally, 11 selected CqNACs showed significant tissue-specific expression patterns, and all the CqNACs were positively regulated in response to salt stress. The result provided evidence for selecting candidate genes for further characterization in tissue/organ specificity and their functional involvement in quinoa's strong salinity tolerance.


Assuntos
Chenopodium quinoa/genética , Genoma de Planta , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Filogenia , Transcriptoma
10.
Sci Rep ; 8(1): 3413, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467500

RESUMO

The MADS-box transcription factors play essential roles in many physiological and biochemical processes of plants, especially in fruit ripening. Here, a tomato MADS-box gene, SlCMB1, was isolated. SlCMB1 expression declined with the fruit ripening from immature green to B + 7 (7 days after Breaker) fruits in the wild type (WT) and was lower in Nr and rin mutants fruits. Tomato plants with reduced SlCMB1 mRNA displayed delayed fruit ripening, reduced ethylene production and carotenoid accumulation. The ethylene production in SlCMB1-RNAi fruits decreased by approximately 50% as compared to WT. The transcripts of ethylene biosynthesis genes (ACS2, ACS4, ACO1 and ACO3), ethylene-responsive genes (E4, E8 and ERF1) and fruit ripening-related genes (RIN, TAGL1, FUL1, FUL2, LoxC and PE) were inhibited in SlCMB1-RNAi fruits. The carotenoid accumulation was decreased and two carotenoid synthesis-related genes (PSY1 and PDS) were down-regulated while three lycopene cyclase genes (CYCB, LCYB and LCYE) were up-regulated in transgenic fruits. Furthermore, yeast two-hybrid assay showed that SlCMB1 could interact with SlMADS-RIN, SlMADS1, SlAP2a and TAGL1, respectively. Collectively, these results indicate that SlCMB1 is a new component to the current model of regulatory network that regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening.


Assuntos
Carotenoides/genética , Etilenos/biossíntese , Frutas/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/genética , Interferência de RNA/fisiologia
11.
Plant Physiol Biochem ; 118: 235-244, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28649000

RESUMO

MADS-box genes encode important transcription factors that are involved in many biological processes of plants, including fruit ripening. In our research, a MADS-box gene, SlMBP8, was identified, and its tissue-specific expression profiles were analysed. SlMBP8 was highly expressed in fruits of the B+4 stage, in senescent leaves and in sepals. To further characterize its function, an RNA interference (RNAi) expression vector of SlMBP8 was constructed and transferred into tomato. In the transgenic plants, the ripening of fruits was shortened by 2-4 days compared to that of wild type. At the same time, carotenoids accumulated to higher levels and the expression of phytone synthase 1 (PSY1), phytoene desaturase (PDS) and ς-carotene desaturase (ZDS) was enhanced in RNAi fruits. The transgenic fruits and seedlings showed more ethylene production compared with that of the wild type. Furthermore, SlMBP8-silenced seedlings displayed shorter hypocotyls due to higher endogenous ethylene levels, suggesting that SlMBP8 may modulates the ethylene triple response negatively. A yeast two-hybrid assay indicated that SlMBP8 could interact with SlMADS-RIN. Besides, the expression of ethylene-related genes, including ACO1, ACO3, ACS2, ERF1, E4 and E8, was simultaneously up-regulated in transgenic plants. In addition, SlMBP8-silenced fruits showed higher ethylene production, suggesting that suppressed expression of SlMBP8 promotes carotenoid and ethylene biosynthesis. In addition, the fruits of transgenic plants displayed more rapid water loss and decreased storability compared to wild type, which was due to the significantly induced expressions of cell wall metabolism genes such as PG, EXP, HEX, TBG4, XTH5 and XYL. These results suggest that SlMBP8 plays an important role in fruit ripening and softening.


Assuntos
Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/biossíntese , Plântula/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Inativação Gênica , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/genética
12.
Sci Rep ; 7(1): 5786, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724949

RESUMO

The basic helix-loop-helix (bHLH) proteins are a large family of transcription factors that control various developmental processes in eukaryotes, but the biological roles of most bHLH proteins are not very clear, especially in tomato. In this study, a PRE-like atypical bHLH gene was isolated and designated as SlPRE2 in tomato. SlPRE2 was highly expressed in immature-green fruits, moderately in young leaves, flowers, and mature-green fruits. To further research the function of SlPRE2, a 35 S:PRE2 binary vector was constructed and transformed into wild type tomato. The transgenic plants showed increased leaf angle and stem internode length, rolling leaves with decreased chlorophyll content. The water loss rate of detached leaves was increased in young transgenic lines but depressed in mature leaves. Besides, overexpression of SlPRE2 promoted morphogenesis in seedling development, producing light-green unripening fruits and yellowing ripen fruits with reduced chlorophyll and carotenoid accumulation in pericarps, respectively. Quantitative RT-PCR analysis showed that expression of the chlorophyll related genes, such as GOLDEN 2-LIKE and RbcS, were decreased in unripening 35 S:PRE2 fruit, and carotenoid biosynthesis-related genes PHYTOENE SYNTHASE1A and ζ-CAROTENE DESATURASE in ripening fruit were also down-regulated. These results suggest that SlPRE2 affects plant morphology and is a negative regulator of fruit pigment accumulation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Expressão Gênica , Morfogênese , Pigmentos Biológicos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Frutas/anatomia & histologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
13.
Plant Sci ; 258: 90-101, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28330566

RESUMO

MADS-domain proteins are important transcription factors that are involved in many biological processes of plants. In the present study, SlMBP11, a member of the AGL15 subfamily, was cloned in tomato plants (Solanum lycopersicon M.). SlMBP11 is ubiquitously expressed in all of the tissues we examined, whereas the SlMBP11 transcription levels were significantly higher in reproductive tissues than in vegetative tissues. Plants exhibiting increased SlMBP11 levels displayed reduced plant height, leaf size, and internode length as well as a loss of dominance in young seedlings, highly branched growth from each leaf axil, and increased number of nodes and leaves. Moreover, overexpression lines also exhibited reproductive phenotypes, such as those having a shorter style and split ovary, leading to polycarpous fruits, while the wild type showed normal floral organization. In addition, delayed perianth senescence was observed in transgenic tomatoes. These phenotypes were further confirmed by analyzing the morphological, anatomical and molecular features of lines exhibiting overexpression. These results suggest that SlMBP11 plays an important role in regulating plant architecture and reproductive development in tomato plants. These findings add a new class of transcription factors to the group of genes controlling axillary bud growth and illuminate a previously uncharacterized function of MADS-box genes in tomato plants.


Assuntos
Proteínas de Domínio MADS/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Proteínas de Domínio MADS/genética , Microscopia Eletrônica de Varredura , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
14.
Plant Physiol Biochem ; 109: 491-501, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27835847

RESUMO

In plant, F-box protein participates in various signal transduction systems and plays an important role in signaling pathways. Here, a putative F-box protein, namely SlGID2, was isolated from tomato (Solanum lycopersicum). Bioinformatics analyses suggested that SlGID2 shows high identity with F-box proteins from other plant species. Expression pattern analysis showed that SlGID2 gene is ubiquitously expressed in tomato tissues. To study the function of SlGID2 in tomato, SlGID2-silenced (SlGID2i) tomato by RNA interference (RNAi) was generated and displayed a dwarf plant and dark-green leaf phenotypes. The defective stem elongation of SlGID2i lines was not rescued by exogenous GA and its endogenous GA level was higher than wild type, further supporting the observation that SlGID2i transgenic plants are GA insensitive. Furthermore, SlGAST1, the downstream gene of GA signaling, and some cell expansion, division related genes (SlCycB1;1, SlCycD2;1, SlCycA3;1, SlXTH2, SlEXP2, SlKRP4) were down-regulated by SlGID2 silencing. In addition, the expression levels of SlDELLA (a negative regulator of GA signaling) and SlGA2ox1 were decreased, while SlGA3ox1 and SlGA20ox2 transcripts were increased in SlGID2i lines. Thus, we conclude that SlGID2 may be a positive regulator of GA signaling and promotes the GA signal pathway.


Assuntos
Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Giberelinas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Fenótipo , Filogenia , Pigmentação/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Transdução de Sinais
15.
Sci Rep ; 6: 20454, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842499

RESUMO

MADS-box transcription factors play important role in plant growth and development, especially floral organ identities. In our study, a MADS-box gene SlGLO1- tomato floral homeotic protein FBP1-like gene was isolated. Its tissue-specific expression profile analysis showed that SlGLO1 was highly expressed in petals and stamens. RNAi (RNA interference) repression of SlGLO1 resulted in floral organ abnormal phenotypes, including green petals with shorter size, and aberrant carpelloid stamens. SlGLO1-silenced lines are male sterile. Total chlorophyll content was increased and chlorophyll biosynthetic genes were significantly up-regulated in SlGLO1-silenced petals and stamens. Furthermore, B-class genes expression analysis indicated that the repressed function of SlGLO1 led to the enhanced expression of TAP3 and the down-regulation of TPI in the petals and stamens, while the expression of TM6 was reduced in petals and increased in stamens and carpels of SlGLO1-RNAi plants. Additionally, pollen grains of transgenic lines were aberrant and failed to germinate and tomato pollen-specific genes were down-regulated by more than 90% in SlGLO1-silenced lines. These results suggest that SlGLO1 plays important role in regulating plant floral organ and pollen development in tomato.


Assuntos
Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Solanum lycopersicum/metabolismo , Vias Biossintéticas , Clorofila/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Especificidade de Órgãos , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA