Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Geochem Health ; 46(1): 11, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147165

RESUMO

The oxidation stability of soil organic matter (SOM) plays an important role in the environmental chemical behavior of heavy metals (HMs). In this study, the oxidation stability of SOM and soil dissolved organic matter (DOM) for four soils around the mining area in Western China, including grassland (GR), forest land (FR), farmland soil (FA), and mining area soil (MA), was investigated. The oxidation effect of fluorescent DOM (FDOM) was determined by using synchronous fluorescence spectroscopy (SFS). The results showed that the oxidation stability of SOM for four soils follows the order: MA > GR > FR > FA. Protein-like fluorescence (A2) is dominant in soil DOM, more than 96% of which were more easily degraded. As the wavelength increases, FDOM components become more difficult to oxidize. Second derivative, two-dimensional correlation spectroscopy (2D-COS) and 1/n power transformation can identify more FDOM components, protein-like materials can be preferential removal by the oxidation process, followed by humic-like substances. The oxidation process increased the release of Cr, Cu, Zn, Pb and Fe in FA soil. Therefore, the oxidation stability of SOM and FDOM can affect the immobilization and release of HMs, and this work provides scientific guidance for remediation of soil HMs around abandoned mining areas.


Assuntos
Metais Pesados , Solo , Matéria Orgânica Dissolvida , Substâncias Húmicas , Corantes , Estresse Oxidativo
2.
Ecotoxicol Environ Saf ; 238: 113567, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35490577

RESUMO

Biological treatment can remove more than 89.8% of total organic carbon (TOC) and 94.4% of fluorescent dissolved organic matter (DOM) in the coking wastewater, thereby affecting the migration, transformation and bioavailability and binding characteristics of heavy metals (HMs). The results of parallel factor analysis (PARAFAC) show that protein-like materials accounted for 97.53% in the coking wastewater DOM, a large number of humic-like substances are produced and accounted for more than 55.40% after biological treatment. A new spectral data processing method, the 1/n-th power transformation after two-dimensional correlated spectroscopy (2D-COS) in combination with synchronous fluorescence spectra (SFS), can identify small features obscured by strong peaks, and reveal more binding sites as well as preserve the sequential order information. The result indicates that the preferential bonding of Cu(II) is at 306 nm (protein-like) for coking wastewater DOM, and at 514 nm (humic-like) for effluent DOM. The C-O group of esters and alcohols can preferentially complexate with Cu(II) in the coking wastewater and effluent DOM. The log KM values of PARAFAC components with Cu(II) are in the range of 3.59-5.06 for coking wastewater DOM, and in the range of 4.80-5.64 for the effluent DOM. Log KM values for protein-like materials with Cu(II) are higher than these for fulvic- and humic-like substances. Humic-like substances can form more stable complexes with Cu(II) in the effluent DOM. Biological treatment increases the chemical stability of DOM-Cu(II) complexes, thereby further reducing the environmental risk of Cu(II).


Assuntos
Coque , Cobre , Matéria Orgânica Dissolvida , Coque/análise , Cobre/análise , Análise Fatorial , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos , Águas Residuárias/análise
3.
Ecotoxicol Environ Saf ; 221: 112456, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34198187

RESUMO

Biochar-derived water-extractable organic matter (WEOM) was obtained under low-temperature pyrolysis (300 °C) using corncob as raw material. WEOM may affect the mobility and bioavailability of soil heavy metals (HMs) through complexation when biochar was used for soil HM remediation. Herein, the characteristics of complexation between HMs (Cr(III) and Cu(II)) and biochar-derived WEOM were investigated by using spectroscopic techniques in conjunction with parallel factor (PARAFAC) analysis and two-dimensional correlation spectroscopy (2D-COS). Six components were identified by PARAFAC modeling, in which protein-, fulvic- and humic-like components accounted for 48.86%, 25.63% and 25.51%, respectively. A nonlinear model was employed to determine the conditional stability constant (KM) and total ligand concentration (CL) of WEOM-HM complexes. The log KM values were in the range of 4.02-5.04 for WEOM-Cr(III) and 4.04-6.58 for WEOM-Cu(II). The 2D-COS in conjunction with log-transformed synchronous fluorescence spectroscopy (SFS) suggested that WEOM components were preferentially complexed with HMs in the following order: 433/270, 433/335, 496/270, 496/335, 370/335, 433/402, 496/402, 335/290, 402/290 for Cr(III), and 290/280, 390/280, 433/280, 496/280, 433/335, 496/335, 390/335, 433/420, 496/402, 335/290, 316/290 for Cu(II). The results of 2D-FTIR-COS suggested a preferential bonding of Cr(III) to the C-N group of alkyl, and Cu(II) to the CO group of alcohols, ethers and esters. Meanwhile, the CO group of ethers and the CN group of alkyl indicated preferential susceptibilities for the addition of Cr(III) and Cu(II) at different concentrations. In addition, protein-like components had remarkably higher total ligand concentration (CL) than fulvic- or humic-like components.


Assuntos
Carvão Vegetal/química , Cromo/química , Cobre/química , Benzopiranos/química , Substâncias Húmicas , Proteínas/química , Pirólise , Temperatura , Água/química , Zea mays
4.
Ecotoxicol Environ Saf ; 214: 112064, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33691241

RESUMO

Hydrophyte decomposition caused large amounts of dissolved organic matter (DOM) to enter aquatic environment that influence the migration and transformation of heavy metals (HMs). Six hydrophytes with five dry weight gradients (DWG) were used for the decomposition experiments. The results showed that protein-like materials occupy relatively high content in the hydrophyte-derived DOM. The binding properties of DOM-Cu(II) have been explored by using two-dimensional correlation spectroscopy (2D-COS) in conjunction with synchronous fluorescence spectroscopy (SFS) and log-transformed SFS. The weak signals of binding site can be amplified by the log-transformed 2D-COS analysis. Herein, more binding sites can be identified by the log-transformed 2D-COS analysis. The results reveal that tryptophan-like materials show a preferential sequence of binding Cu(II) in the hydrophyte-derived DOM with a relatively low DWG and sediment DOM, and fulvic-like substances indicate a preferential sequence of binding Cu(II) in the hydrophyte-derived DOM with a relatively high DWG. Meanwhile, the results of binding parameters indicate that the log K is the range of 3.61-4.25, 4.33-4.74, 4.59-4.97, 3.91-4.41, and 4.14-4.78 for D1-D5, respectively, suggesting that hydrophyte decomposition can change the binding affinity between DOM components and Cu(II). The complexes of fluorescent components with Cu(II) showed a high log K value at long wavelength (e.g. humic-like substances), and a relatively low fluorescent ligand proportion (f%) at shorter wavelength in the hydrophyte-derived DOM. However, the log K is the range of 3.08-4.31, 4.09-4.45, 3.93-4.35, 4.39-4.75, and 3.95-4.36 for C1-C5, separately. Protein-like substances with Cu(II) showed a relatively high log K value with the exception of C4. The log-transformed 2D-COS can be an analytical tool to understand the binding heterogeneity of DOM with HMs. The study can provide a guide for managing and controlling the effects of hydrophyte decomposition.


Assuntos
Cobre/metabolismo , Poluentes Químicos da Água/metabolismo , Corantes , Cobre/química , Substâncias Húmicas/análise , Metais Pesados/química , Espectrometria de Fluorescência/métodos
5.
J Sci Food Agric ; 101(3): 927-936, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32748962

RESUMO

BACKGROUND: A large number of digestates have not been fully utilized due to a lack of scientific, reasonable guidance, as well as imperfect technology. Hybrid giant Napier has great potential for use as a type of energy plant. As such, this study investigated the effects of digestate on the growth of a candidate energy crop and examined whether digestate was an ecologically viable means for soil restoration. RESULTS: The results showed that the total yields of all treatment groups receiving irrigation of digestate were higher (5.19-26.00%) than those of the control. The total phosphorus, total potassium, available nitrogen, available phosphorus, and available potassium content of the soil had also increased after digestate application, compared with the control. Urease activities for all treatments increased 15.28 to 69.44% more than that of the corresponding control. Soil dissolved organic matter (DOM) mainly contained humic-like and fulvic-like components through the application of digestate. More fluorescent components were also identified by two-dimensional correlation spectroscopy (2D-COS). These fluorescent components can improve the aromaticity and molecular weight of soil DOM so as to improve soil quality. CONCLUSIONS: Digestate improved not only the aboveground biomass accumulation, but also the chemical properties of the soil, which was an appropriate strategy for restoring soil quality and contributing to the sustainable development of marginal. The long-term impact of digestate application on soil quality will require additional long-term experiments. © 2020 Society of Chemical Industry.


Assuntos
Pennisetum/química , Solo/química , Biomassa , Fertilizantes/análise , Substâncias Húmicas/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Pennisetum/crescimento & desenvolvimento , Pennisetum/metabolismo , Fósforo/análise , Fósforo/metabolismo , Potássio/análise , Potássio/metabolismo
6.
Ecotoxicol Environ Saf ; 204: 111129, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805505

RESUMO

Anaerobic digestate has been widely used for agricultural activities as an organic fertilizer product. Dissolved organic matter (DOM) derived from anaerobic digestate plays a key role in the speciation, bioavailability and ultimate fate of metals that is related to agriculture and food safety as well as the soil environment. Hence, the binding properties of Cu, Pb and Zn with digestate DOM are investigated using two-dimensional correlation spectroscopy (2D-COS) in combination with ultraviolet absorption, synchronous fluorescence spectra (SFS) and Fourier transform infrared (FTIR) spectroscopy. The 2D absorption COS shows that the DOM at 200 nm is most susceptive with the addition of Pb, followed by Zn and Cu. The log-transformed absorption spectra can also obtain more valuable signals than that from conventional absorption spectra. The 2D-SFS-COS indicates that protein-like peak is more sensitive to the variation of the concentration of metal ions, and fulvic-like substances can preferentially interact with the three heavy metals (HMs). The 2D-FTIR-COS reveals that Cu(II) and Zn(II) ions can be bonded preferentially to the N-H of secondary amide (II), and phenolic OH groups shows a favorable binding with Pb(II). Humic-like peaks with Cu(II) and Zn(II) obtains relatively higher log KM values than fulvic- and protein-like substances. However, the proportion of initial fluorescence (f) for DOM-Cu(II) and DOM-Zn(II) decreased with an increase in wavelength. Protein-like materials have more fluorescent substances that can combine with Cu(II) and Zn(II). This study provides a guide for understanding the geochemical behavior of metal ions in agricultural soils when anaerobic digestate is applied as an organic fertilizer product.


Assuntos
Substâncias Húmicas/análise , Esterco/microbiologia , Metais Pesados/química , Anaerobiose , Animais , Galinhas , Fertilizantes , Fluorescência , Solo/química , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
7.
Ecotoxicol Environ Saf ; 173: 444-451, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30798188

RESUMO

Carbamazepine (CBZ) is a worldwide anti-epileptic drug, whose fate and migration can be greatly influenced by contact with dissolved organic matter (DOM). The properties of DOM in road runoff can be greatly changed by grassy swale (GS) treatment, which influences the complexation of CBZ with DOM. Spectroscopic techniques were employed to explore the different binding properties between CBZ and DOM, and to understand the migration and biogeochemistry of CBZ. The two-dimensional correlation spectroscopy (2D-COS)demonstrated that effluent DOM displayed more binding sites for CBZ than influent DOM, and the binding sequencing of CBZ with DOM fluorophores can be greatly influenced by GS treatment. The results also suggest that protein-like materials exhibit higher log KM values than other fluorescent components, indicating that fluorescent protein-like materials play a crucial role in the biogeochemical behavior of CBZ. Meanwhile, the log KM values showed a remarkable increase after GS treatment. GS treatment can also remove most fluorescent DOM, reducing the risk of CBZ in the water environment.


Assuntos
Anticonvulsivantes/química , Carbamazepina/química , Substâncias Húmicas , Poaceae , Poluentes Químicos da Água/química , Espectrometria de Fluorescência , Purificação da Água/métodos
8.
Environ Technol ; 36(5-8): 992-1000, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25285561

RESUMO

Biogas residues (BRs) are prospective organic fertilizer sources for agricultural cultivation. Besides N and P, however, other inorganic metal elements, such as K, Fe, Cu, Zn and so on, also affect the nutritional level of BRs significantly. In this study, a sequential extraction procedure (SEP) combined with a toxicity characteristic leaching procedure (TCLP) was conducted to investigate the speciation and leachability of metal components in BRs. The results showed that element K was the most effective nutrient component due to its largest available fraction and highest mobility factor (MF) of 78.4, whereas phytotoxic Al was the most stable and inert element in terms of its 96.68% residual fraction. Ca and Mg could be viewed as potential nutrient sources because their MFs exceeded 60. TCLP results revealed that these BRs could be classed as non-toxic organic waste but Cu and Zn should be paid more attention in that their total contents were beyond the permissible values. Meanwhile, more concerns should be given to Ni and Pb due to their large TCLP extractable fraction. In conclusion, these BRs can be used as a prospective nutrient pool for agricultural cultivation. SEP combined with TCLP can be effectively applied for assessing the nutrient level of the BRs as organic fertilizer for agricultural use.


Assuntos
Biocombustíveis , Fertilizantes/análise , Metais/análise , Micronutrientes/análise , Resíduos/análise , Metais/química , Micronutrientes/química
9.
Ecotoxicol Environ Saf ; 102: 18-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24580817

RESUMO

In China, agricultural use of anaerobic digestate sludge is considered a concern due to high heavy metal content of the sludge. In this study, sequential extraction procedure (SEP) was conducted to determine metal speciation which affects release and mobility of metal significantly. The results of SEP showed that each heavy metal possessed different distribution characteristics. Cu mainly reacted with carboxyl functional group to form the fraction bound to organic matter. Zn and Mn were dominated in the fraction bound to Fe-Mn oxides and carbonates, respectively. Pb, Ni, Cr, Cd and As were present as the residual fraction. Examination of mobility factors (MFs) indicated that Zn, Pb, Ni, Mn and Cd were more mobile whereas Cr and As were immobilized in anaerobic digestate. Based on the results, it can be stated that Cu, Zn, Mn, Ni and Cd may be grouped as toxic and active components in sludge and should be regarded as the priority pollutants for elimination. Pb should be monitored in terms of its high mobility factors (MF). Cr and As, nevertheless, were the most stable components in sludge.


Assuntos
Poluentes Ambientais/química , Metais Pesados/química , Esgotos/química , China , Monitoramento Ambiental , Poluentes Ambientais/análise , Metais Pesados/análise , Medição de Risco
10.
Arch Environ Contam Toxicol ; 66(2): 270-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24287702

RESUMO

The aim of the present study was to investigate the fluorescence properties of dissolved organic matter (DOM) from four leachate samples, which were disposed by regulating tank (RTK), anaerobic treatment (ATT), oxidation ditch (ODH), and membrane bioreactor and to assess their binding capacities and stability constants by Cu(II). The results showed that five fluorescent peaks, including three humic-like peaks (peaks A, C, and E) and two protein-like peaks (peaks B and D), were identified. Most fluorescent components can be degraded after ODH. Fluorescence-quenching titration showed that the modified Stern-Volmer model can be used to fit the quenching data and calculate conditional stability constants (log K) and the % of fluorophores (f %) between DOM and Cu(II). DOM-Cu(II) complexes had relatively high log K values in the RTK and ATT disposals. After the ODH-treatment process, log K values showed a marked decrease. The f % values of protein-like materials were evidently greater than those of humic-like substances. The results showed the impact of the water treatment on the metal-binding ability of various fractions.


Assuntos
Cobre/química , Substâncias Húmicas , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Purificação da Água , Espectrometria de Fluorescência
11.
Chemosphere ; 317: 137896, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682631

RESUMO

In this work, uranium (U(VI)) binding characteristics of the intrinsic dissolved organic matters (DOM) from the biochars prepared under thermal air oxidation (TAO) and non-TAO conditions were studied using synchronous fluorescence spectra (SFS) and Fourier transform infrared (FTIR) in conjunction with the general two-dimensional correlation spectroscopy (2D-COS), heterospectral 2D-COS and moving-window (MW) 2D-COS. The chemical compositions of the intrinsic DOMs from biochars with/without TAO were investigated by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). Results showed that the preferential binding of U(VI) to functional groups followed the order: 937 (carboxyl γC-OH), 981 (carboxyl γC-OH), 1511 (aromatic vC = C), 1108 (esters or ethers vC-O), 1282 (esters or carboxyl vC-O), 1698 (saturated carboxylic acid or ketone vC = O) cm-1 for biochar DOM after TAO (OB600), and 937 (carboxyl γC-OH), 1484 (lipids δC-H or phenolic vC-O), 1201 (esters or carboxyl vC-O), 1112 (esters or ethers vC-O), 1706 (saturated aldehyde, carboxylic acid or ketone vC = O), 1060 (phenolic, esters or ethers vC-O), 1014 (phenolic, esters or ethers vC-O) cm-1 for the pristine biochar (B600). Fulvic-like substances at 375 nm in the biochar DOM showed a preferential binding with U(VI) after TAO, while humic-like substances played a more critical role in the U(VI) complexation with biochar DOM obtained from non-TAO condition. The results also indicated that TAO increased the content of fluorescent DOM and the chemical stability of DOM-U(VI) complexes. The FT-ICR MS results showed an increase in the relative abundance of protein-like, carbohydrates-like, tannins-like, unsaturated hydrocarbons, and condensed aromatic structure and a decrease in the relative abundance of lipid-like and lignin-like after TAO. Consequently, although biochar after TAO had a much poorer content of intrinsic DOM, its intrinsic DOM showed a much higher capacity in U(VI) precipitation. Therefore, the TAO substantially changed the chemical composition, binding property and environmental behavior of intrinsic DOM from biochar.


Assuntos
Urânio , Urânio/análise , Matéria Orgânica Dissolvida , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos , Éteres , Cetonas
12.
Water Res ; 241: 120163, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276654

RESUMO

Due to the high operational cost and secondary pollution of the conventional advanced nitrogen removal of municipal wastewater, a novel concept and technique of advanced synergetic nitrogen removal of partial-denitrification anammox and denitrification was proposed, which used the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by biogenic manganese oxides (BMOs) as carbon source. When the influent NH4+-N in the denitrifying filter was about 1.0, 2.0, 3.0, 4.0, 5.0 and 7.0 mg/L, total nitrogen (TN) in the effluent decreased from about 22 mg/L to 11.00, 7.85, 6.85, 5.20, 4.15 and 2.09 mg/L, and the corresponding removal rate was 49.15, 64.82, 69.40, 76.70, 81.36 and 90.58%, respectively. The proportional contribution of the partial-denitrification anammox pathway to the TN removal was 12.00, 26.45, 39.70, 46.04, 54.97 and 64.01%, and the actual CODcr consumption of removing 1 mg TN was 0.75, 1.43, 1.26, 1.17, 1.08 and 0.99 mg, respectively, which was much lower than the theoretical CODcr consumption of denitrification. Furthermore, CODcr in the effluent decreased to 8.12 mg/L with a removal rate of 72.40%, and the removed organic matters were mainly non-fluorescent organic matters. Kinds of denitrifying bacteria, anammox bacteria, hydrolytic bacteria and manganese oxidizing bacteria (MnOB) were identified in the denitrifying filter, which demonstrated that the advanced synergetic nitrogen removal was achieved. This novel technology presented the advantages of high efficiency of TN and CODcr removal, low operational cost and no secondary pollution.


Assuntos
Manganês , Águas Residuárias , Desnitrificação , Nitrogênio , Carbono , Reatores Biológicos/microbiologia , Oxirredução , Óxidos , Esgotos
13.
Ecotoxicol Environ Saf ; 85: 144-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22980145

RESUMO

Dissolved organic matter (DOM) was extracted from six sediment samples in arid and semi-arid region, which was characterized by fluorescence excitation-emission matrices (EEMs). The results showed that four fluorescent peak, fulvic-like (peak A), humic-like (peak C) and two tryptophan-like (peaks B and D), were identified in lake sediment DOM. Fluorescence quenching titration showed that peaks B and D were quenched gradually by adding additional Cu (II) and Hg (II), whereas humic-like substances had no systematic trend of the change of fluorescence intensity. Increasing fluorescence intensity value of humic-like substances can also be found. The modified Stern-Volmer model was used to calculate conditional stability constants (logK) and the percent of fluorophores (f %) which participate in the complexation between DOM and Cu (II), and Hg (II). The results showed that DOM-Cu (II) and DOM-Hg (II) complexes had higher logK values of 4.21-5.23 and the logK values of DOM-Cu (II) are much larger than the corresponding values for Hg (II). Peak B showed relatively low logK and high f % values than those of peak D. Different pollution sources which are mainly obtained from the upstream industrial wastewater, domestic sewage and return water of farmland irrigation tend to affect the stability constants and complexing capacities of Cu (II) and Hg (II).


Assuntos
Cobre/química , Sedimentos Geológicos/química , Mercúrio/química , Compostos Orgânicos/química , Clima Desértico , Lagos/química , Esgotos/química , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química
14.
ScientificWorldJournal ; 2012: 841636, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23365532

RESUMO

An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO(2)e per annum. The internal rate of return (IRR) of the project is only -0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO(2), the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO(2) emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China.


Assuntos
Poluição do Ar/análise , Dióxido de Carbono/análise , Carvão Mineral , Centrais Elétricas , Algoritmos , China , Conservação de Recursos Energéticos/economia , Conservação de Recursos Energéticos/métodos , Monitoramento Ambiental/economia , Monitoramento Ambiental/métodos , Geografia , Modelos Teóricos
15.
J Hazard Mater ; 421: 126739, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34339985

RESUMO

The structure and composition of biochar-derived dissolved organic matter (DOM) at different pyrolysis temperatures differed significantly, affecting the environmental geochemical behavior of heavy metals (HMs). Herein, the binding properties of Cu(II) onto walnut-shell DOM were investigated using spectroscopic methods. The results showed that the DOM at low pyrolysis temperatures (300 °C and 500 °C) showed higher Cu(II) affinity than that at high pyrolysis temperature (700 °C). There was a preferential Cu(II) binding with fulvic-like substances (360 nm) at 300 °C, and with protein-like materials (275 nm) at 500 °C and 700 °C. The C-O group of alcohols, ethers, and esters showed preferential binding with Cu(II) at 300 °C and 700 °C pyrolysis temperatures. However, preferential bonding of Cu(II) to the C-O stretching vibration and O-H bending vibration of carboxyl was exhibited at 500 °C pyrolysis temperature. Pyrolysis temperature played a crucial role in the release of biochar-derived DOM and in the migration and bioavailability of HMs. Meanwhile, the adsorption effect of Cu(II) increased by 11.2% for biochar at 300 °C, and decreased by 15.0% and 61.1% for biochar at 500 °C and 700 °C, respectively, after the removal of DOM, suggesting that the presence of DOM influenced the adsorption behavior of biochar towards Cu(II).


Assuntos
Substâncias Húmicas , Pirólise , Carvão Vegetal , Substâncias Húmicas/análise , Temperatura
16.
Foods ; 11(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407018

RESUMO

Herein, we developed a paper-based smart sensing chip for the real-time, visual, and non-destructive monitoring of food freshness using a ratiometric aggregation-induced emission (AIE) luminogen (i.e., H+MQ, protonated 4-(triphenylamine)styryl)quinoxalin-2(1H)-one) as pH sensitive indicators. Upon exposure to amine vapors, the deprotonation of H+MQ occurs and triggers its color change from blue to yellow, with the fluorescence redshift from blue to amaranth. Consequently, we successfully achieved the sensitive detection of ammonia vapors by recording the bimodal color and fluorescence changes. Given the high sensitivity of H+MQ to ammonia vapor, a paper-based smart sensor chip was prepared by depositing H+MQ on the commercial qualitative filter paper through a physical deposition strategy. After being placed inside the sealed containers, the developed H+MQ-loaded paper chip was applied to the real-time monitoring of biogenic amine contents according to its color difference and ratio fluorescence change. The detection results were further compared with those obtained by the high-performance liquid chromatography method, which verified the feasibility of the designed paper chip for the food spoilage degree evaluation. Briefly, this work indicates that the designed H+MQ-loaded paper chip could be a promising approach for improving food freshness monitoring.

17.
Water Sci Technol ; 63(5): 1010-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21411953

RESUMO

To develop a proper indicator which could predict water quality and trace pollution sources is critically important for the management of sustainable aquatic ecosystem. In our study, seven water samples collected from Wuliangsuhai Lake in Inner Mongolia were used. UV-visible spectra and synchronous fluorescence spectra were applied to investigate the humification degree and aromatic structure of dissolved organic matter (DOM) extracted from water samples. The results showed that both samples from W1 site and W3 site display lower humification degree and less aromatic structure, where industrial wastewater and domestic sewage, and reclaimed water of farmland irrigation, were accepted respectively. After computing the values of SUVA(254), A(280), A(250/365), A(253/203) and A(226-400), we reached the conclusion that they have a consistent trend (W4> W6> W5> W2> W7> W1> W3). Fluorescence index (f(450/500)) was always utilised to interpret the origin of organic matter in a complex aquatic environment system. Values of f(450/500) are closer to 1.60, indicating that humic substances derived from terrestrial sources and biological sources. Our study demonstrated that reclaimed water of farmland irrigation, industrial wastewater and domestic sewage will definitely influence the humification degree and amount of the aromatic structure of DOM.


Assuntos
Água Doce/química , Espectrometria de Fluorescência/métodos , Análise Espectral/métodos , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos , Substâncias Húmicas/análise , Raios Ultravioleta
18.
Environ Sci Pollut Res Int ; 28(18): 22878-22885, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33426589

RESUMO

The fluorescent components of dissolved organic matter (DOM) in biogas slurry can react with heavy metals (HMs) and affect the migration, transformation, toxicity, and bioavailability of HMs in soil. Fluorescence quenching titration combined with two-dimensional correlation spectroscopy (2D-COS) can reveal the binding mechanism between HMs and different fluorescent components of biogas slurry DOM. The logarithmic-transformed (log-transformed) 2D-COS can be used to decrease the difference in the fluorescence intensity between low-intensity and high-intensity fluorophores that provides a better insight into the binding mechanism between biogas slurry DOM and HMs. Synchronous maps suggest that protein-like substances are more susceptive to the variation of the concentration of metal ions than fulvic-like substances. Asynchronous maps show that the preferential bonding of Cu(II) and Cr(III) to humic-like substances can be found in the biogas slurry DOM, as well as Fe(III) and Pb(II) to protein-like materials. DOM-Cu(II) may lead to an increasing risk of the migration of Cu(II) from soil to water environment due to the low log K values in the range from 2.93 to 3.46. Protein-like substances can also increase the environmental risk of HMs when these low-stable complexes occur migration and transformation. The potential environmental risk of protein-like with HMs follows the order: Pb(II) > Cu(II) > Cr(III). Here we demonstrate that the log-transformed 2D-COS can also identify fluorescence components at longer wavelength with relatively low content and reveals their preferential binding sequence and the number of binding sites. The study on the complexation between biogas slurry DOM and HMs provides a scientific basis for the environmental chemical behavior of HMs after the application of biogas slurry in agricultural soils.


Assuntos
Biocombustíveis , Metais Pesados , Compostos Férricos , Substâncias Húmicas/análise , Espectrometria de Fluorescência
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(10): 2680-4, 2010 Oct.
Artigo em Zh | MEDLINE | ID: mdl-21137399

RESUMO

Fluorescence spectroscopy relies on the fluorescence emitted by rigid conjugated systems and thus has been increasingly used to assess the soil organic matter (SOM) humification. This technique is widely applied to solution samples of humic substances, and so far no information exists about its applicability to solid-phase soil samples. Composite soil samples of different depths (0-20, 20-40 and 40-60 cm) were collected from four different halophyte communities along a saline-impact gradient, namely, Comm. Salicornia europaea (CSE), Comm. Suaeda glauca (CSG), Comm. Kalidium foliatum (CKF) and Comm. Sophora alopecuroides (CSA) located around Wuliangsuhai Lake. A humification index based on solid surface fluorescence spectroscopy (HIX(SSF)) was proposed, and compared with conventional humification indices I400/I360, I470/I360, I465/I399 and A4 /Al. There were close positive linear correlations between HIXass and 1400/1360, 145/I399 and A4/A1, but a poor positive linear correlation existed between the HIX(SSF) and I470/I360. The results indicated that HIX(SSF) can be taken as a tool to assess the soil humi fication. The HIX(SSF) of the CSE and CSG varied inappreciably within soil profiles and there was no trend with depth. However the HIX(SSF) varied appreciably in the CKF and CSA, and the HIX(SSF) of the bottom soil profile was higher than that of the other profiles. As a whole, the soil humification degree was low around Wuliangsuhai Lake, and the ecological environment was relatively fragile. The salinity showed a strong negative linear relationship with the I400/I360, I470/I360, I465/I399 and A4/A1, but a good negative linear relationship with the HIX(SSF). The results indicated that the degree of the SOM humification increased with the drop in the salinity. The HIX(SSF) can be an indicator not only of the degree of SOM humification, but also of the process of the salinisation.

20.
J Hazard Mater ; 393: 122436, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151934

RESUMO

The influence of digestate dissolved organic matter (DOM) on chemical behavior of soil heavy metals (HMs) in an abandoned copper mining areas was explored by fluorescence quenching titration and heavy metal extracting experiment. Five fluorescent components were obtained from digestate DOM by PARAFAC model combined with the EEM data. The stability constant (log KM) values were in the range of 4.95-5.53, 5.05-5.29, 5.21-6.00, and 4.12-4.75 for DOM-Cr(III), DOM-Cu(II), DOM-Fe(III) and DOM-Pb(II) complexes, respectively. Alcohols, ethers and esters in digestate DOM were preferentially combined with Fe(III), Cu(II) and Zn(II). However, phenolic hydroxyl groups were more likely to combine with Cr(III) and Pb(II). The speciation distribution of HMs indicated that mining resulted in a higher concentration of Cu(II) in the grassland soil (GS) than those in the agricultural soil (AS) and forest land soil (FS). Fe-Mn oxides and organic forms of Pb(II) increased dramatically due to mining. Digestate DOM extraction can increase the content of Cr(III), Fe(III) and Pb(II), and decrease the content of Cu(II) and Zn(II) in the AS, GS, and FS. However, the contents of HMs in the mining soil (MS) and slag soil (SS) decreased due to the application of digestate DOM, except for Cu(II) in the SS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA