Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155697

RESUMO

Inflammasome activation is an essential innate immune defense mechanism against Salmonella infections. Salmonella has developed multiple strategies to avoid or delay inflammasome activation, which may be required for long-term bacterial persistence. However, the mechanisms by which Salmonella evades host immune defenses are still not well understood. In this study, Salmonella Enteritidis (SE) random insertion transposon library was screened to identify the key factors that affect the inflammasome activation. The type I secretion system (T1SS) protein SiiD was demonstrated to repress the NLRP3 inflammasome activation during SE infection and was the first to reveal the antagonistic role of T1SS in the inflammasome pathway. SiiD was translocated into host cells and localized in the membrane fraction in a T1SS-dependent and partially T3SS-1-dependent way during SE infection. Subsequently, SiiD was demonstrated to significantly suppress the generation of mitochondrial reactive oxygen species (mtROS), thus repressing ASC oligomerization to form pyroptosomes, and impairing the NLRP3 dependent Caspase-1 activation and IL-1ß secretion. Importantly, SiiD-deficient SE induced stronger gut inflammation in mice and displayed NLRP3-dependent attenuation of the virulence. SiiD-mediated inhibition of NLRP3 inflammasome activation significantly contributed to SE colonization in the infected mice. This study links bacterial T1SS regulation of mtROS-ASC signaling to NLRP3 inflammasome activation and reveals the essential role of T1SS in evading host immune responses.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Salmonella enteritidis , Sistemas de Secreção Tipo I , Transdução de Sinais , Caspase 1/metabolismo , Interleucina-1beta/metabolismo
2.
J Immunol ; 210(5): 668-680, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695776

RESUMO

The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.


Assuntos
Doença de Marek , Animais , Alelos , Aminoácidos , Membrana Celular , Galinhas , Doença de Marek/genética , Antígenos de Histocompatibilidade Classe I/imunologia
3.
Infect Immun ; 92(4): e0050523, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38477589

RESUMO

The inflammasome is a pivotal component of the innate immune system, acting as a multiprotein complex that plays an essential role in detecting and responding to microbial infections. Salmonella Enteritidis have evolved multiple mechanisms to regulate inflammasome activation and evade host immune system clearance. Through screening S. Enteritidis C50336ΔfliC transposon mutant library, we found that the insertion mutant of dinJ increased inflammasome activation. In this study, we demonstrated the genetic connection between the antitoxin DinJ and the toxin YafQ in S. Enteritidis, confirming their co-transcription. The deletion mutant ΔfliCΔdinJ increased cell death and IL-1ß secretion in J774A.1 cells. Western blotting analysis further showed elevated cleaved Caspase-1 product (p10 subunits) and IL-1ß secretion in cells infected with ΔfliCΔdinJ compared to cells infected with ΔfliC. DinJ was found to inhibit canonical inflammasome activation using primary bone marrow-derived macrophages (BMDMs) from Casp-/- C57BL/6 mice. Furthermore, DinJ specifically inhibited NLRP3 inflammasome activation, as demonstrated in BMDMs from Nlrp3-/- and Nlrc4-/- mice. Fluorescence resonance energy transfer (FRET) experiments confirmed the translocation of DinJ into host cells during infection. Finally, we revealed that DinJ could inhibit the secretion of IL-1ß and IL-18 in vivo, contributing to S. Enteritidis evading host immune clearance. In summary, our findings provide insights into the role of DinJ in modulating the inflammasome response during S. Enteritidis infection, highlighting its impact on inhibiting inflammasome activation and immune evasion.


Assuntos
Antitoxinas , Inflamassomos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Salmonella enteritidis , Camundongos Endogâmicos C57BL , Macrófagos , Caspase 1/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
4.
J Med Virol ; 96(6): e29743, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884419

RESUMO

As one of the most effective measures to prevent seasonal influenza viruses, annual influenza vaccination is globally recommended. Nevertheless, evidence regarding the impact of repeated vaccination to contemporary and future influenza has been inconclusive. A total of 100 subjects singly or repeatedly immunized with influenza vaccines including 3C.2a1 or 3C.3a1 A(H3N2) during 2018-2019 and 2019-2020 influenza season were recruited. We investigated neutralization antibody by microneutralization assay using four antigenically distinct A(H3N2) viruses circulating from 2018 to 2023, and tracked the dynamics of B cell receptor (BCR) repertoire for consecutive vaccinations. We found that vaccination elicited cross-reactive antibody responses against future emerging strains. Broader neutralizing antibodies to A(H3N2) viruses and more diverse BCR repertoires were observed in the repeated vaccination. Meanwhile, a higher frequency of BCR sequences shared among the repeated-vaccinated individuals with consistently boosting antibody response was found than those with a reduced antibody response. Our findings suggest that repeated seasonal vaccination could broaden the breadth of antibody responses, which may improve vaccine protection against future emerging viruses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Reações Cruzadas , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Influenza Humana/virologia , Adulto , Reações Cruzadas/imunologia , Masculino , Feminino , Vacinação , Pessoa de Meia-Idade , Adulto Jovem , Testes de Neutralização , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/genética , Adolescente
5.
Br J Dermatol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752336

RESUMO

BACKGROUND: Psoriasis is a prevalent chronic inflammatory dermatosis characterized by excessive proliferation of keratinocytes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly identified post-translational modification that regulates various biological processes. Abnormal Khib modification has been closely associated with the development of autoimmune diseases. OBJECTIVE: To investigate the abnormal Khib profile and its pathogenic role in psoriasis. METHODS: We utilized liquid chromatography-tandem mass spectrometry to analyze Khib-modified proteins in the epidermis of psoriasis and healthy controls. Mutated cells and mice with downregulated Ebp1Khib210 were generated to investigate its functional effects in psoriasis. RESULTS: The omic analysis revealed dysregulation of Khib modification in psoriatic lesions, exhibiting a distinct profile compared to controls. We observed the downregulation of Ebp1Khib210 in psoriatic lesions and IMQ-induced psoriatic mice. Notably, the expression of Ebp1Khib210 was upregulated in psoriatic patients following effective treatment. Decreased Ebp1Khib210 enhanced keratinocyte viability, proliferation, and survival while inhibiting apoptosis in vitro. Additionally, Pa2g4K210A mice with downregulated Ebp1Khib210 exhibited more severe psoriatic lesions and enhanced keratinocyte proliferation. Moreover, we found that Ebp1K210A mutation increased the interaction between Ebp1 and nuclear Akt, thereby inhibiting MDM2-mediated TIF-IA ubiquitination, and resulting to increased rRNA synthesis and keratinocyte proliferation. The downregulation of Ebp1Khib210 was attributed to inflammation-induced increases in HDAC2 expression. CONCLUSION: Our findings demonstrate that downregulation of Ebp1Khib210 promotes keratinocyte proliferation through modulation of Akt signaling and TIF-IA-mediated rRNA synthesis. These insights into Khib modification provide a better understanding of the pathogenesis of psoriasis and suggest potential therapeutic targets.

6.
Pharmacol Res ; 202: 107136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460778

RESUMO

CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.


Assuntos
Arabinose , PPAR gama , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Arabinose/farmacologia , Arabinose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo/metabolismo
7.
Analyst ; 149(5): 1464-1472, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38284827

RESUMO

Copper ions (Cu2+), as a crucial trace element, play a vital role in living organisms. Thus, the detection of Cu2+ is of great significance for disease prevention and diagnosis. Nanochannel devices with an excellent nanoconfinement effect show great potential in recognizing and detecting Cu2+ ions. However, these devices often require complicated modification and treatment, which not only damages the membrane structure, but also induces nonspecific, low-sensitivity and non-repeatable detection. Herein, a 2D MXene-carboxymethyl chitosan (MXene/CMC) freestanding membrane with ordered lamellar channels was developed by a super-assembly strategy. The introduction of CMC provides abundant space charges, improving the nanoconfinement effect of the nanochannel. Importantly, the CMC can chelate with Cu2+ ions, endowing the MXene/CMC with the ability to detect Cu2+. The formation of CMC-Cu2+ complexes decreases the space charges, leading to a discernible variation in the current signal. Therefore, MXene/CMC can achieve highly sensitive and stable Cu2+ detection based on the characteristics of nanochannel composition. The linear response range for Cu2+ detection is 10-9 to 10-5 M with a low detection limit of 0.095 nM. Notably, MXene/CMC was successfully applied for Cu2+ detection in real water and fetal bovine serum samples. This work provides a simple, highly sensitive and stable detection platform based on the properties of the nanochannel composition.


Assuntos
Quitosana , Nitritos , Oligoelementos , Elementos de Transição , Cobre , Quitosana/química , Íons/química
8.
Analyst ; 149(13): 3522-3529, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787653

RESUMO

Bioinspired nanochannel-based sensors have elicited significant interest because of their excellent sensing performance, and robust mechanical and tunable chemical properties. However, the existing designs face limitations due to material constraints, which hamper broader application possibilities. Herein, a heteromembrane system composed of a periodic mesoporous organosilica (PMO) layer with three-dimensional (3D) network nanochannels is constructed for glutathione (GSH) detection. The unique hierarchical pore architecture provides a large surface area, abundant reaction sites and plentiful interconnected pathways for rapid ionic transport, contributing to efficient and sensitive detection. Moreover, the thioether groups in nanochannels can be selectively cleaved by GSH to generate hydrophilic thiol groups. Benefiting from the increased hydrophilic surface, the proposed sensor achieves efficient GSH detection with a detection limit of 1.2 µM by monitoring the transmembrane ionic current and shows good recovery ranges in fetal bovine serum sample detection. This work paves an avenue for designing and fabricating nanofluidic sensing systems for practical and biosensing applications.


Assuntos
Glutationa , Limite de Detecção , Compostos de Organossilício , Glutationa/química , Glutationa/análise , Glutationa/sangue , Porosidade , Compostos de Organossilício/química , Animais , Bovinos , Técnicas Biossensoriais/métodos , Membranas Artificiais , Técnicas Eletroquímicas/métodos
9.
J Immunol ; 208(9): 2154-2162, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35418471

RESUMO

The detailed features and the longitudinal variation of influenza-specific T cell responses within naturally infected patients and the relationship with disease severity remain uncertain. In this study, we characterized the longitudinal influenza-specific CD4+ and CD8+ T cell responses, T cell activation, and migration-related cytokine/chemokine secretion in pH1N1-infected patients with or without viral pneumonia with human PBMCs. Both the influenza-specific CD4+ and CD8+ T cells presented higher responses in patients with severe infection than in mild ones, but with distinct longitudinal variations, phenotypes of memory markers, and immune checkpoints. At 7 ± 3 d after onset of illness, effector CD8+ T cells (CD45RA+CCR7-) with high expression of inhibitory immune receptor CD200R dominated the specific T cell responses. However, at 21 ± 3 d after onset of illness, effector memory CD4+ T cells (CD45RA-CCR7-) with high expression of PD1, CTLA4, and LAG3 were higher among the patients with severe disease. The specific T cell magnitude, T cell activation, and migration-related cytokines/chemokines possessed a strong connection with disease severity. Our findings illuminate the distinct characteristics of immune system activation during dynamic disease phases and its correlation with lung injury of pH1N1 patients.


Assuntos
Influenza Humana , Pneumonia , Linfócitos T CD8-Positivos , Quimiocinas , Citocinas/metabolismo , Humanos , Antígenos Comuns de Leucócito , Receptores CCR7
10.
Analyst ; 148(10): 2327-2334, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37097282

RESUMO

Saxitoxin (STX) is a typical toxic guanidinium neurotoxin, one of the paralytic shellfish poisons (PSP), which poses a serious threat to human health. In this paper, a simple and sensitive SERS aptamer sensor (abbreviated as AuNP@4-NTP@SiO2) for the quantitative determination of STX was developed. Hairpin aptamers of saxitoxin are modified on magnetic beads and used as recognition elements. In the presence of STX, DNA ligase, and the rolling circle template (T1), a rolling circle amplification reaction was triggered to produce long single-stranded DNA containing repetitive sequences. The sequence can be hybridized with the SERS probe to realize the rapid detection of STX. Due to the inherent merits of its components, the obtained AuNP@4-NTP@SiO2 SERS aptamer sensor manifests excellent sensing performance for STX detection with a wide linear range from 2.0 × 10-10 mol L-1 to 5.0 × 10-4 mol L-1 and a lower detection limit of 1.2 × 10-11 mol L-1. This SERS sensor can provide a strategy for the micro-detection of other biological toxins by changing the aptamer sequence.


Assuntos
Aptâmeros de Nucleotídeos , Saxitoxina , Humanos , Dióxido de Silício , DNA de Cadeia Simples , Limite de Detecção
11.
Environ Res ; 222: 115347, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702185

RESUMO

Herein, we report a novel Cu2(OH)3 F/CQDs-BiVO4 composite photo-Fenton-like system, which used BiVO4 and Cu2(OH)3F as electron donor and acceptor, respectively, and achieved efficient electron transfer between them through the electron bridging effect of Carbon quantum dots (CQDs). The material exhibited excellent ciprofloxacin (CIP) removal efficiency in the photo-Fenton-like coupled system. Cu2(OH)3 F/CQDs-BiVO4 had an incredibly fast response rate, eliminating 98.1% of CIP from the solution in just 1 h, according to the reaction kinetics. Exploratory tests proved that the catalyst kept up a sufficient level of activity across a wide pH range of 3-11 and in the presence of various anions. The activity, morphology, and crystal structure of the samples did not appreciably alter after five recycles. Finally, a possible reaction mechanism was also proposed based on the band structure, position and reaction species.


Assuntos
Carbono , Pontos Quânticos , Pontos Quânticos/química , Elétrons , Ciprofloxacina , Catálise
12.
Appl Microbiol Biotechnol ; 107(13): 4395-4408, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37266585

RESUMO

In vitro intestinal epithelium models have drawn great attention to investigating intestinal biology in recent years. However, the difficulty to maintain the normal physiological status of primary intestinal epithelium in vitro limits the applications. Here, we designed patterned electrospun polylactic acid (PLA) nanofibrous membranes with crypt-like topography and mimic ECM fibrous network to support crypt culture and construct in vitro intestinal epithelium models. The patterned electrospun PLA nanofibrous membranes modified with Matrigels at 0 °C showed high biocompatibility and promoted cell growth and proliferation. The constructed duodenum epithelium models and colon epithelium models on the patterned electrospun PLA nanofibrous membranes expressed the typical differentiation markers of intestinal epithelia and the gene expression levels were close to the original tissues, especially with the help of probiotics. The constructed intestinal epithelium models could be used to assess probiotic adhesion and colonization, which were verified to show significant differences with the Caco-2 cell models due to the different cell types. These findings provide new insights and a better understanding of the roles of biophysical, biochemical, and biological signals in the construction of in vitro intestinal epithelium models as well as the potential applications of these models in the study of host-gut microbes interactions. KEY POINTS: • Patterned electrospun scaffold has crypt-like topography and ECM nanofibrous network. • Matrigels at 0°C modify scaffolds more effectively than at 37°C. • Synergy of biomimic scaffold and probiotics makes in vitro model close to tissue.


Assuntos
Nanofibras , Alicerces Teciduais , Humanos , Engenharia Tecidual , Células CACO-2 , Diferenciação Celular , Mucosa Intestinal/metabolismo , Poliésteres/metabolismo
13.
Eur Arch Otorhinolaryngol ; 280(4): 2017-2024, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36495327

RESUMO

PURPOSE: To determine the independent predictive role of nasal obstruction in resistant hypertension (RH) in uncontrolled hypertensive patients with obstructive sleep apnea (OSA). METHODS: This prospective cohort study comprised of 236 OSA patients with uncontrolled blood pressure (BP) using 1 or 2 classes of antihypertensive drugs visiting Sleep Medicine Center from April 2021 to March 2022. Information on demographic characteristics, comorbidities, BP control and classes of antihypertensive medication, sleep-related symptoms, Nasal Obstruction Symptom Evaluation (NOSE) Scale and sleep parameters was collected. RH incidence according to the BP control and classes of antihypertensive drugs data during the 5 month follow-up was collected. RESULTS: After 5 month follow-up, 217 participants were included for final data analysis. Ninety-five subjects had nocturnal nasal obstruction with a higher proportion of RH (36.8% vs. 17.2%, p = 0.001) compared to those without nocturnal nasal obstruction. After adjustment for demographic characteristics, sleep-related symptoms and OSA severity, multinomial logistic regression models showed that nocturnal nasal obstruction (all ORs > 2.5, p < 0.05) or NOSE ≥ 8 (all ORs > 4.5, p < 0.05) was independently associated with a higher odds of RH. Nasal obstruction treatment improved NOSE score significantly, but did not reduce the incidence of RH significantly. Effective nasal obstruction treatment was associated with antihypertensive drugs reduction (OR 4.43; 95% CI 1.20-16.27). CONCLUSIONS: Nasal obstruction is an independent predictor of RH in uncontrolled hypertensive patients with OSA. In addition to the treatment of OSA, assessment and treatment of nasal obstruction should be considered in the management of uncontrolled hypertensive patients with OSA.


Assuntos
Hipertensão , Obstrução Nasal , Apneia Obstrutiva do Sono , Humanos , Anti-Hipertensivos/uso terapêutico , Estudos Prospectivos , Obstrução Nasal/complicações , Obstrução Nasal/tratamento farmacológico , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Apneia Obstrutiva do Sono/diagnóstico
14.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686225

RESUMO

Cell-to-cell communication must occur through molecular transport in the intercellular fluid space. Nanoparticles, such as exosomes, diffuse or move more slowly in fluids than small molecules. To find a microfluidic technology for real-time exosome experiments on intercellular communication between living cells, we use the microfluidic culture dish's quaternary ultra-slow microcirculation flow field to accumulate nanoparticles in a specific area. Taking stem cell-tumor cell interaction as an example, the ultra-slow microcirculatory flow field controls stem cell exosomes to interfere with tumor cells remotely. Under static coculture conditions (without microfluidics), the tumor cells near stem cells (<200 µm) show quick breaking through from its Matrigel drop to meet stem cells, but this 'breaking through' quickly disappears with increasing distance. In programmed ultra-slow microcirculation, stem cells induce tumor cells 5000 µm far at the site of exosome deposition (according to nanoparticle simulations). After 14 days of programmed coculture, the glomeration and migration of tumor cells were observed in the exosome deposition area. This example shows that the ultra-slow microcirculation of the microfluidic culture dish has good prospects in quantitative experiments to study exosome communication between living cells and drug development of cancer metastasis.


Assuntos
Exossomos , Microfluídica , Microcirculação , Células-Tronco , Comunicação Celular
15.
Clin Infect Dis ; 75(1): e1072-e1081, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34609506

RESUMO

BACKGROUND: The longitudinal antigen-specific immunity in COVID-19 convalescents is crucial for long-term protection upon individual re-exposure to SARS-CoV-2, and even more pivotal for ultimately achieving population-level immunity. We conducted this cohort study to better understand the features of immune memory in individuals with different disease severities at 1 year post-disease onset. METHODS: We conducted a systematic antigen-specific immune evaluation in 101 COVID-19 convalescents, who had asymptomatic, mild, moderate, or severe disease, through 2 visits at months 6 and 12 after disease onset. The SARS-CoV-2-specific antibodies, comprising neutralizing antibody (NAb), immunoglobulin (Ig) G, and IgM, were assessed by mutually corroborated assays (ie, neutralization, enzyme-linked immunosorbent assay [ELISA], and microparticle chemiluminescence immunoassay [MCLIA]). Meanwhile, T-cell memory against SARS-CoV-2 spike, membrane, and nucleocapsid proteins was tested through enzyme-linked immunospot assay (ELISpot), intracellular cytokine staining, and tetramer staining-based flow cytometry, respectively. RESULTS: SARS-CoV-2-specific IgG antibodies, and NAb, can persist among >95% of COVID-19 convalescents from 6 to 12 months after disease onset. At least 19/71 (26%) of COVID-19 convalescents (double positive in ELISA and MCLIA) had detectable circulating IgM antibody against SARS-CoV-2 at 12 months post-disease onset. Notably, numbers of convalescents with positive SARS-CoV-2-specific T-cell responses (≥1 of the SARS-CoV-2 antigen S1, S2, M, and N proteins) were 71/76 (93%) and 67/73 (92%) at 6 and 12 months, respectively. Furthermore, both antibody and T-cell memory levels in the convalescents were positively associated with disease severity. CONCLUSIONS: SARS-CoV-2-specific cellular and humoral immunities are durable at least until 1 year after disease onset.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Estudos de Coortes , Humanos , Imunidade Humoral , Imunoglobulina G , SARS-CoV-2
16.
Int J Cancer ; 150(8): 1223-1232, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34724210

RESUMO

Tumor blood vessels provide oxygen and necessary nutrients for the tumor, which provides the basis for tumor metastasis. Therefore, tumor angiogenesis plays a very important role in tumor growth and metastasis. In contrast to linear RNAs, circRNAs represent a type of closed-loop RNA with diverse biological functions. At the same time, circRNAs have strong stability, timeliness, tissue specificity and disease specificity. With the rapid development of next-generation sequencing and bioinformatics, there have been an increasing number of studies on circRNAs. At present, a large number of studies have reported that circRNAs regulate tumor growth, invasion, metastasis, tumor metabolism, tumor immunity and other biological functions. Increasing evidence has shown that circRNAs also play an important role in tumor angiogenesis. In this review, we briefly introduced tumor angiogenesis and circRNAs and outlined the main ways that circRNAs affect tumor angiogenesis from multiple aspects. Finally, we further explored the potential clinical application value of circRNAs in the context of tumor angiogenesis.


Assuntos
Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética , RNA Circular , Animais , Humanos
17.
J Med Virol ; 94(8): 3863-3875, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35355288

RESUMO

With deep sequencing of virus genomes within the hosts, intrahost single nucleotide variations (iSNVs) have been used for analyses of virus genome variation and evolution, which is indicated to correlate with viral pathogenesis and disease severity. Little is known about the features of iSNVs among DNA viruses. We performed the epidemiological and laboratory investigation of one outbreak of adenovirus. The whole genomes of viruses in both original oral swabs and cell-cultured virus isolates were deeply sequenced. We identified 737 iSNVs in the viral genomes sequenced from original samples and 46 viral iSNVs in cell-cultured isolates, with 33 iSNVs shared by original samples and cultured isolates. Meanwhile, we found these 33 iSNVs were shared by different patients, among which, three hot spot areas 6367-6401, 9213-9247, and 10 584-10 606 within the functional genes of the adenovirus genome were found. Notably, the substitution rates of iSNVs were closely correlated with the clinical and immune indicators of the patients. Especially a positive correlation to neutrophils was found, indicating a predictable biomarker of iSNV dynamics. Our findings demonstrated the neutrophil-correlated dynamic evolution features of the iSNVs within adenoviruses, which indicates a virus-host interaction during human infection of a DNA virus.


Assuntos
Adenoviridae , Neutrófilos , Adenoviridae/genética , Genoma Viral , Humanos , Filogenia
18.
Brain Behav Immun ; 102: 98-109, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181439

RESUMO

Hyper-inflammatory reaction plays a crucial role in the pathophysiology of depression and anxiety disorders. However, the mechanisms underlying inflammation-induced anxiety changes remain poorly understood. Here, we showed that in the lipopolysaccharide (LPS)-induced anxiety model, Interleukin (IL)-33, a member of the IL-1 family, was up-regulated in the basolateral amygdala, and IL-33 deficiency prevent anxiety-like behavior. Overexpression of IL-33 in amygdalar astrocytes led to anxiety-like response via repressing brain-derived neurotrophic factor (BDNF) expression. Mechanically, IL-33 suppressed BDNF expression through NF-κB pathway to impair GABAergic transmission in the amygdala and NF-κB inhibitor abolished the effect of IL-33 on anxiety. Administration of an inverse GABAA receptor agonist increased the anxiety of IL-33- deficient mice. These results reveal that inflammatory response can activate anxiogenic circuits by suppressing BDNF and GABAergic neurons transmission, suggesting that IL-33 in basolateral amygdalar is a linker between inflammation and anxiety.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Fator Neurotrófico Derivado do Encéfalo , Interleucina-33 , NF-kappa B , Animais , Ansiedade/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/patologia , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Interleucina-33/metabolismo , Camundongos , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/metabolismo
19.
Exp Cell Res ; 399(2): 112465, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385415

RESUMO

Melanoma is the most aggressive malignant tumor of skin cancer as it can grow rapidly and metastasize. Photodynamic therapy (PDT) is a promising cancer ablation method for skin tumors, although it lacks efficiency owing to factors such as tumor characteristics, delivery of photosensitizers, immune response in vivo etc. Extensive investigation of molecules that can potentially modulate treatment efficacy is required. Protein 4.1R is a cytoskeletal protein molecule. Previous studies have shown that protein 4.1R knockdown reduces PDT sensitivity in mouse embryonic fibroblast cells. However, the functional role of protein 4.1R in melanoma is unclear. In this study, we aimed to elucidate the effect of protein 4.1R on PDT for melanoma in mice and the mechanism of anti-tumor immunity. Our results indicated that CRISPR/Cas9-mediated protein 4.1R knockout promotes the proliferation, migration, and invasion of B16 cells. We further investigated the potential mechanism of protein 4.1R on tumor cell PDT sensitivity. Our results showed that protein 4.1R knockout reduced the expression of membrane transporters γ-aminobutyric acid transporter (GAT)-1 and (GAT)-2 in B16 cells, which affected 5-ALA transmembrane transport and reduced the efficiency of PDT on B16 cells. Protein 4.1R knockout downregulated the anti-tumor immune response triggered by PDT in vivo. In conclusion, our data suggest that protein 4.1R is an important regulator in PDT for tumors and may promote the progress and efficacy of melanoma treatment.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Ácidos Levulínicos/metabolismo , Melanoma Experimental/tratamento farmacológico , Proteínas de Membrana/fisiologia , Neoplasias Cutâneas/tratamento farmacológico , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Fotoquimioterapia/métodos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Ácido Aminolevulínico
20.
Exp Cell Res ; 409(1): 112896, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717920

RESUMO

M2 macrophages are crucial components of the tumour microenvironment and have been shown to be closely related to tumour progression. Co-culture with 4.1R-/- M2 macrophages enhances the malignancy of colon cancer (CC), but the mechanism remains unclear. Here, we report that protein 4.1R knockout reduced the phagocytosis of M2 macrophages (M-CSF/IL-4-treated bone marrow cells) and promoted MC38 colon cancer cell proliferation, migration, invasion, tumour formation and epithelial-mesenchymal transition (EMT), which are regulated by M2 macrophages. Further mechanistic dissection revealed that the 4.1R knockout upregulated vascular endothelial growth factor A (VEGFA) secreted by M2 macrophages and promoted colon cancer progression by activating the PI3K/AKT signalling pathway. In summary, our present study identified that 4.1R downregulates VEGFA secretion in M2 macrophages and delays the malignant potential of colon cancer by inhibiting the PI3K/AKT signalling pathway.


Assuntos
Neoplasias do Colo/genética , Regulação para Baixo/genética , Macrófagos/fisiologia , Proteínas dos Microfilamentos/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Ativação de Macrófagos , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Transdução de Sinais/genética , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA