Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 41(1): 261-274, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29044662

RESUMO

Herbivore-induced terpenes have been reported to function as ecological signals in plant-insect interactions. Here, we showed that insect-induced cotton volatile blends contained 16 terpenoid compounds with a relatively high level of linalool. The high diversity of terpene production is derived from a large terpene synthase (TPS) gene family. The TPS gene family of Gossypium hirsutum and Gossypium raimondii consist of 46 and 41 members, respectively. Twelve TPS genes (GhTPS4-15) could be isolated, and protein expression in Escherichia coli revealed catalytic activity for eight GhTPS. The upregulation of the majority of these eight genes additionally supports the function of these genes in herbivore-induced volatile biosynthesis. Furthermore, transgenic Nicotiana tabacum plants overexpressing GhTPS12 were generated, which produced relatively large amounts of (3S)-linalool. In choice tests, female adults of Helicoverpa armigera laid fewer eggs on transgenic plants compared with non-transformed controls. Meanwhile, Myzus persicae preferred feeding on wild-type leaves over leaves of transgenic plants. Our findings demonstrate that transcript accumulation of multiple TPS genes is mainly responsible for the production and diversity of herbivore-induced volatile terpenes in cotton. Also, these genes might play roles in plant defence, in particular, direct defence responses against herbivores.


Assuntos
Alquil e Aril Transferases/genética , Gossypium/genética , Gossypium/imunologia , Herbivoria/fisiologia , Hidroliases/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Monoterpenos Acíclicos , Alquil e Aril Transferases/metabolismo , Animais , Afídeos , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Gossypium/enzimologia , Gossypium/parasitologia , Larva , Monoterpenos/metabolismo , Mariposas/fisiologia , Filogenia , Plantas Geneticamente Modificadas , Nicotiana/genética , Compostos Orgânicos Voláteis/metabolismo
2.
J Chem Ecol ; 43(2): 207-214, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28070757

RESUMO

Pheromone binding proteins (PBPs) are thought to play key roles in insect sex pheromone recognition; however, there is little in vivo evidence to support this viewpoint in comparison to abundant biochemical data in vitro. In the present study, two noctuid PBP genes HarmPBP1 and HarmPBP2 of the serious agricultural pest, Helicoverpa armigera were selected to be knocked down by RNA interference, and then the changes in electrophysiological and behavioral responses of male mutants to their major sex pheromone component (Z)-11-hexadecenal (Z11-16:Ald) were recorded. There were no significant electrophysiological or behavioral changes of tested male moths in response to Z11-16:Ald when either single PBP gene was knocked down. However, decreased sensitivity of male moths in response to Z11-16:Ald was observed when both HarmPBP1 and HarmPBP2 genes were silenced. These results reveal that both HarmPBP1 and HarmPBP2 are required for the recognition of the main sex pheromone component Z11-16:Ald in H. armigera. Furthermore, these findings may help clarify physiological roles of moth PBPs in the sex pheromone recognition pathway, which in turn could facilitate pest control by exploring sex pheromone blocking agents.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Insetos/metabolismo , Cetonas/farmacologia , Mariposas , Interferência de RNA , Atrativos Sexuais/metabolismo , Animais , Antenas de Artrópodes/efeitos dos fármacos , Antenas de Artrópodes/fisiologia , Comportamento Animal/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Técnicas de Silenciamento de Genes , Controle de Insetos , Proteínas de Insetos/genética , Cetonas/metabolismo , Masculino , Mariposas/genética , Mariposas/metabolismo , Mariposas/fisiologia , Ligação Proteica , Atrativos Sexuais/genética , Comportamento Sexual Animal/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-28321909

RESUMO

Insects rely heavily on their sophisticated chemosensory systems to locate host plants and find conspecific mates. Although the molecular mechanisms of odorant recognition in many Lepidoptera species have been well explored, limited information has been reported on the geometrid moth Ectropis obliqua Prout, an economically important pest of tea plants. In the current study, we first attempted to identify and characterize the putative olfactory carrier proteins, including odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). By analyzing previously obtained transcriptomic data of third-instar larvae, five OBPs and 14 CSPs in E. obliqua were identified. Sequence alignment, conserved motif identification, and phylogenetic analysis suggested that candidate proteins have typical characteristics of the insect OBP or CSP family. The expression patterns regarding life stages and different tissues were determined by quantitative real-time PCR. The results revealed that four transcripts (OBP2, OBP4 and CSP8, CSP10) had larvae preferential expression profiles and nine candidate genes (PBP1, OBP1 and CSP2, CSP4, CSP5, CSP6, CSP7, CSP11, and CSP13) were adult-biased expressed. Further specific tissue expression profile evaluation showed that OBP1, OBP2, OBP4, and PBP1 were highly expressed at olfactory organs, implying their potential involvement in chemical cue detection, whereas CSPs were ubiquitously detected among all of the tested tissues and could be associated with multiple physiological functions. This study provided a foundation for understanding the physiological functions of OBPs and CSPs in E. obliqua and will help pave the way for the development of a new environmental friendly pest management strategy against the tea geometrid moth.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Receptores Odorantes/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Insetos/química , Larva , Masculino , Filogenia , Receptores Odorantes/química , Alinhamento de Sequência , Olfato , Transcriptoma
4.
BMC Genomics ; 14: 636, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24053512

RESUMO

BACKGROUND: One of the challenges in insect chemical ecology is to understand how insect pheromones are synthesised, detected and degraded. Genome wide survey by comparative sequencing and gene specific expression profiling provide rich resources for this challenge. A. ipsilon is a destructive pest of many crops and further characterization of the genes involved in pheromone biosynthesis and transport could offer potential targets for disruption of their chemical communication and for crop protection. RESULTS: Here we report 454 next-generation sequencing of the A. ipsilon pheromone gland transcriptome, identification and expression profiling of genes putatively involved in pheromone production, transport and degradation. A total of 23473 unigenes were obtained from the transcriptome analysis, 86% of which were A. ipsilon specific. 42 transcripts encoded enzymes putatively involved in pheromone biosynthesis, of which 15 were specifically, or mainly, expressed in the pheromone glands at 5 to 120-fold higher levels than in the body. Two transcripts encoding for a fatty acid synthase and a desaturase were highly abundant in the transcriptome and expressed more than 40-fold higher in the glands than in the body. The transcripts encoding for 2 acetyl-CoA carboxylases, 1 fatty acid synthase, 2 desaturases, 3 acyl-CoA reductases, 2 alcohol oxidases, 2 aldehyde reductases and 3 acetyltransferases were expressed at a significantly higher level in the pheromone glands than in the body. 17 esterase transcripts were not gland-specific and 7 of these were expressed highly in the antennae. Seven transcripts encoding odorant binding proteins (OBPs) and 8 encoding chemosensory proteins (CSPs) were identified. Two CSP transcripts (AipsCSP2, AipsCSP8) were highly abundant in the pheromone gland transcriptome and this was confirmed by qRT-PCR. One OBP (AipsOBP6) were pheromone gland-enriched and three OBPs (AipsOBP1, AipsOBP2 and AipsOBP4) were antennal-enriched. Based on these studies we proposed possible A. ipsilon biosynthesis pathways for major and minor sex pheromone components. CONCLUSIONS: Our study identified genes potentially involved in sex pheromone biosynthesis and transport in A. ipsilon. The identified genes are likely to play essential roles in sex pheromone production, transport and degradation and could serve as targets to interfere with pheromone release. The identification of highly expressed CSPs and OBPs in the pheromone gland suggests that they may play a role in the binding, transport and release of sex pheromones during sex pheromone production in A. ipsilon and other Lepidoptera insects.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Atrativos Sexuais/biossíntese , Transcriptoma , Animais , Etiquetas de Sequências Expressas , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Masculino , Redes e Vias Metabólicas/genética , Análise de Sequência de DNA , Atrativos Sexuais/genética
5.
J Chem Ecol ; 39(9): 1221-31, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23955060

RESUMO

Semiochemicals such as sex pheromones and plant volatiles are crucial components of insect mating systems and host plant localization. In the olfactory signal transduction pathway, odorant-binding proteins (OBPs) are important elements that function in the first step of the pathway by carrying hydrophobic semiochemicals across the sensillum lymph to the olfactory receptors (ORs). In this study, we examined the binding affinities of semiochemicals to AlinOBP10, a putative OBP from the alfalfa plant bug, Adelphocoris lineolatus, that we demonstrate is expressed mainly in sensory organs. We then characterized the biological activities of the high affinity semiochemicals by measuring their electrophysiological activities in antennae and behavioral responses in the plant bug. AlinOBP10 displayed weak binding affinities to two major putative pheromone components, hexyl butyrate and (E)-2-hexenyl butyrate. In contrast, AlinOBP10 exhibited higher binding affinities to six host plant volatiles, namely myrcene, ß-pinene, ß-ionone, 3-hexanone, (E)-2-hexenal, and 1-hexanol. The biological activities of these six putative ligands were further studied in electroantennogram recordings and Y-tube olfactometer trials. The three compounds, (E)-2-hexenal, 1-hexanol, and 3-hexanone elicited strong electrophysiological responses, but elicited distinct behaviors. While 3-hexanone was attractive to female adults, (E)-2-hexenal and 1-hexanol were significant repellents. Although a weak electrophysiological response was elicited with ß-pinene, it was a strong repellent. These results demonstrate that AlinOBP10 can interact with attractants, as well as repellents, with some specificity toward plant volatiles over sex pheromones.


Assuntos
Heterópteros/fisiologia , Feromônios/metabolismo , Receptores Odorantes/metabolismo , Animais , Antenas de Artrópodes/metabolismo , Comportamento Animal/fisiologia , Feminino , Masculino , Proteínas Recombinantes/metabolismo , Compostos Orgânicos Voláteis/metabolismo
6.
Transgenic Res ; 21(2): 279-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21688166

RESUMO

In this study, the non-target effects of Bt rice "KMD2" expressing a Cry1Ab protein on the performance of the brown planthopper (BPH), Nilaparvata lugens, over multiple generations were evaluated under laboratory and field conditions. In the laboratory, BPH was reared to observe the impact of the Bt rice as compared to its parental non-Bt cultivar Xiushui 11, while the population dynamics and oviposition performance of BPH were investigated in the field. The survival of BPH nymphs fed Bt and non-Bt rice did not differ significantly. The nymph developmental duration of BPH was significantly delayed by the Bt rice by comparison with the non-Bt rice for the 1st and 2nd but not the 4th generation. Most importantly, the fecundity of BPH on the Bt rice was significantly decreased in every generation when compared with the non-Bt rice. In the field investigations, the population density of BPH nymphs was significantly lower in the Bt rice field. However, the temporal pattern of population dynamics of BPH adults was similar between the Bt and non-Bt rice, presumably due to migratory interference of the adults. In the Bt rice field, the percentage of tillers with eggs and the number of eggs per tiller were also significantly lower from tillering to mature stage. Additionally, Cry1Ab protein could not be detected in guts from single BPH adults. In general, our results suggest that the Bt rice "KMD2" could not stimulate an outbreak of BPH.


Assuntos
Proteínas de Bactérias/genética , Endotoxinas/genética , Regulação da Expressão Gênica de Plantas , Genes Sintéticos , Hemípteros/patogenicidade , Proteínas Hemolisinas/genética , Oryza/parasitologia , Migração Animal , Animais , Toxinas de Bacillus thuringiensis , Feminino , Fertilidade , Hemípteros/crescimento & desenvolvimento , Hemípteros/fisiologia , Herbivoria/fisiologia , Longevidade , Masculino , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oviposição , Contagem de Ovos de Parasitas , Controle Biológico de Vetores/métodos , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Densidade Demográfica , Dinâmica Populacional , Análise de Sobrevida
7.
J Chem Ecol ; 38(3): 287-94, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22402893

RESUMO

Odorant receptors are thought to play critical roles in the perception of chemosensory stimuli by insects. The primary method to address the functions of odorant receptors in insects is to use in vitro binding assays between the receptors and potential chemical stimuli. We injected MmedOrco dsRNA into the abdominal cavity of a braconid wasp, Microplitis mediator, and assayed for expression of this gene 72 h after treatment (RNAi). Quantitative real-time PCR demonstrated that the level of mRNA expression in MmedOrco dsRNA-treated M. mediator was significantly reduced (>90%) when compared with water-treated controls. Furthermore, electroantennogram (EAG) responses of M. mediator to two chemical attractants, nonanal and farnesene, were also reduced significantly (~70%) in RNAi-treated M. mediator when compared to controls. RNAi-treated M. mediator also responded by walking/flying at a lower rate to both chemicals when compared with controls in a Y-tube olfactometer bioassay, which provides direct evidence that MmedOrco plays an important role in perception of nonanal and farnesene in M. mediator.


Assuntos
Proteínas de Insetos/metabolismo , Feromônios/metabolismo , Receptores Odorantes/metabolismo , Vespas/fisiologia , Aldeídos/metabolismo , Animais , Comportamento Animal , Fenômenos Eletrofisiológicos , Feminino , Voo Animal , Proteínas de Insetos/genética , Masculino , Interferência de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Odorantes/genética , Sesquiterpenos/metabolismo , Caminhada , Vespas/genética , Vespas/metabolismo
8.
J Chem Ecol ; 37(2): 189-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21184151

RESUMO

Chemoreception in insects is mediated by small odorant-binding proteins (OBPs) that are believed to carry lipophilic stimuli to the olfactory receptor cells through the aqueous sensillar lymph. Binding experiments and recent structural studies of OBPs have illustrated their versatility and ability to accommodate ligands of different shapes and chemical structures. We expressed and purified seven recombinant OBPs (MmedOBP1-MmedOBP7) from the parasitic wasp, Microplitis mediator (Hymenoptera: Braconidae) in a prokaryotic expression system. With 4,4'-dianilino-1,1'-binaphthyl-5,5'-sulfonic acid (bis-ANS) as a fluorescent probe, the ligand-binding specificities of these seven MmedOBPs with 50 small organic compounds were investigated in vitro. The results revealed that all of the M. mediator OBPs can bind a wide variety of odorant molecules with different binding affinities. The best ligand for all seven MmedOBPs was ß-ionone. MmedOBP2 showed affinity for some aromatic compounds, whereas MmedOBP4 and MmedOBP6 bound several terpenoids. MmedOBP5 bound ß-ionone, but did not bind any of the other potential ligands that we tested.


Assuntos
Himenópteros , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Proteínas Recombinantes/metabolismo , Naftalenossulfonato de Anilina/química , Naftalenossulfonato de Anilina/metabolismo , Animais , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Masculino , Plantas/química , Ligação Proteica , Especificidade por Substrato , Compostos Orgânicos Voláteis/metabolismo
9.
Arch Insect Biochem Physiol ; 77(2): 81-99, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21541988

RESUMO

In the insect phylum, the relationships between individuals and their environment are often modulated by chemical communication. Odorant binding proteins (OBPs) are widely and robustly expressed in insect olfactory organs and play a key role in chemosensing and transporting hydrophobic odorants across the sensillum lymph to the olfactory receptor neuron. In this study, a novel OBP gene (AlinOBP1) in the lucerne plant bug, Adelphocoris lineolatus was identified, cloned and expressed. Real-time PCR results indicated that the expression level of AlinOBP1 gene differed in each developmental stage (from first instar to adult) and was predominantly expressed in the antennae of adults. The expression level of AlinOBP1 was 1.91 times higher in male antennae than in female antennae. The binding properties of AlinOBP1 with 114 odorants were measured using a fluorescence probe, N-phenyl-1-naphthylamine (1-NPN), with fluorescence competitive binding. The results revealed that AlinOBP1 exhibits high binding abilities with two major putative pheromone components, ethyl butyrate and trans-2-hexenyl butyrate. In addition, it was observed that six volatiles released from cotton, octanal, nonanal, decanal, 2-ethyl-1-hexanol, ß-caryophyllene and ß-ionone also bind to AlinOBP1. Immunocytochemistry analysis showed that AlinOBP1 was expressed in the sensillum lymph of sensilla trichodica and sensilla basiconca. Our results demonstrate that AlinOBP1 may function as a carrier in the chemoperception of the lucerne plant bug.


Assuntos
Heterópteros/genética , Receptores Odorantes/genética , Sequência de Aminoácidos , Animais , Antenas de Artrópodes/metabolismo , Clonagem Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Heterópteros/crescimento & desenvolvimento , Heterópteros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Feromônios/metabolismo , Reação em Cadeia da Polimerase , Receptores Odorantes/análise , Receptores Odorantes/isolamento & purificação , Receptores Odorantes/metabolismo , Sensilas/metabolismo , Caracteres Sexuais
10.
Arch Insect Biochem Physiol ; 73(2): 61-73, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19847794

RESUMO

Aminopeptidase N (APN) and cadherin-like proteins have been previously identified as Cry1Ac-binding proteins in Helicoverpa armigera (Hübner). In this study, a proteomic approach was used to identify novel Cry1Ac-binding proteins in H. armigera. Brush border membrane vesicles (BBMV) of H. armigera were extracted and separated by two-dimensional gel electrophoresis (2-DE). Cry1Ac-binding proteins were detected using antisera against Cry1Ac. Peptide mass fingerprinting (PMF) was used to identify Cry1Ac-binding proteins. In total, four proteins were identified as candidate Cry1Ac-binding proteins in H. armigera: vacuolar ATP synthase (V-ATPase) subunit B, actin, heat shock cognate protein (HSCP), and a novel protein.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Vesículas Citoplasmáticas/química , Vesículas Citoplasmáticas/metabolismo , Trato Gastrointestinal/química , Trato Gastrointestinal/ultraestrutura , Microvilosidades/química , Microvilosidades/metabolismo , Ligação Proteica , Proteômica
11.
J Econ Entomol ; 103(4): 1444-53, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20857760

RESUMO

Six transgenic rice, Oryza sativa L., lines (G6H1, G6H2, G6H3, G6H4, G6H5, and G6H6) expressing a fused Cry1Ab/Vip3H protein, were evaluated for resistance against the Asiatic rice borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), and the stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) in the laboratory and field. The bioassay results indicated that the mortality of Asiatic rice borer and S. inferens neonate larvae on six transgenic lines from seedling to filling stage was up to 100% at 168 h after infestation. The cumulative feeding area by Asiatic rice borer neonate larvae on all transgenic lines was significantly reduced compared with the untransformed parental 'Xiushui 110' rice. A 2-yr field evaluation showed that damage during the vegetative stage (deadheart) or during the reproductive stage (whitehead) caused by Asiatic rice borer and S. inferens for transgenic lines was much lower than the control. For three lines (G6H1, G6H2, and G6H6), no damage was found during the entire growing period. Estimation of fused Cry1Ab/Vip3H protein concentrations using PathoScreen kit for Bt-Cry1Ab/1Ac protein indicated that the expression levels of Cry1Ab protein both in main stems (within the average range of 0.006-0.073% of total soluble protein) and their flag leaves (within the average range of 0.001-0.038% of total soluble protein) were significantly different among six transgenic lines at different developmental stages. Both laboratory and field researches suggested that the transgenic rice lines have considerable potential for protecting rice from attack by both stem borers.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Mariposas/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Oryza/parasitologia , Plantas Geneticamente Modificadas
12.
Chem Senses ; 34(6): 503-12, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19497961

RESUMO

The parasitoids of Cotton Bollworm Microplitis mediator (Hymenoptera: Braconidae) find their hosts through the odor released by stressed plants. In this study, preliminary characterization and isolation of cDNAs from male M. mediator antennal libraries identified 8 putative odorant-binding proteins (OBPs). Real-time polymerase chain reaction method was used to study the expression pattern of these isolated genes. Their gene expression profiles under a wide range of conditions indicated that only 4 OBP genes in M. mediator were antenna specific. The remaining 4 genes are either expressed ubiquitously or strictly regulated in specialized tissues or during different developmental stages. Some OBP genes were gender specific. These findings support that OBPs play dynamic roles during development of M. mediator and are likely to be involved in broader physiological functions.


Assuntos
Himenópteros/metabolismo , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Himenópteros/genética , Himenópteros/crescimento & desenvolvimento , Proteínas de Insetos/genética , Masculino , Dados de Sequência Molecular , Receptores Odorantes/classificação , Receptores Odorantes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores Sexuais
13.
Curr Med Sci ; 39(2): 243-249, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31016517

RESUMO

EN: Summary]This study aimed to test the effects of five single nucleotide polymorphisms within SLC2A9 on uric acid level in a special ethnic population, the Uygurs in Xinjiang, China. According to our inclusion and exclusion criteria, Uygur adults from Xinjiang constituted the study population. There were 1053 Uygur adults with hyperuricemia and 1373 normal Uygur adults who served as controls. Five single nucleotide polymorphisms within SLC2A9 (rs938557, rs7679916, rs7349721, rs13101785, and rs13137343) were selected with the HapMap dataset and TaqMan assays. We found that, in normouricemia group, rs938557 was significantly correlated with uric acid (ß=11.39±3.74, P=0.0024) adjusting for age, gender and BMI; rs7679916 and rs13137343 were marginally associated with uric acid concentration (ß=5.77±3.09, P=0.0626; ß= 5.99±3.08, P=0.0520). In the hyperuricemia group, no SNP was found to possibly influence uric acid concentration. None of these SNPs showed significant association with hyperuricemia after controlling for age, gender and BMI. There were significant or marginal correlations between certain single nucleotide polymorphisms in the SLC2A9 region and uric acid concentration in Uygur normouricemia samples. In turn, some of these single nucleotide polymorphisms in SLC2A9 may increase the risk of hyperuricemia.


Assuntos
Predisposição Genética para Doença/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Hiperuricemia/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Povo Asiático/genética , China , Estudos Transversais , Feminino , Frequência do Gene/genética , Humanos , Hiperuricemia/metabolismo , Masculino , Pessoa de Meia-Idade , Ácido Úrico/metabolismo
14.
Environ Entomol ; 37(6): 1410-5, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19161683

RESUMO

Seven synthetic herbivore-induced plant volatiles (HIPVs) and a mixture of nonanal + (Z)-3-hexen-1-ol were field tested for their ability to attract beneficial insects in an open cotton field. Eleven species of the main natural enemies of insect pests in cotton fields were studied. Significantly greater numbers of the ladybird beetle Coccinella septempunctata were trapped on (Z)-3-hexenyl acetate-baited cards than on others that were HIPV baited or the control cards. Erigonidium graminicolum was attracted to traps baited with nonanal, (Z)-3-hexenyl acetate, and methyl salicylate (MeSA). The predatory bug Deraeocoris punctulatus was only attracted to traps baited with octanal. The predatory bug Orius similis responded to traps baited with 3,7-dimethyl,1,3,6-octatriene, nonanal, (Z)-3-hexenyl acetate, nonanal + (Z)-3-hexen-1-ol, and MeSA. Dimethyl octatriene, nonanal + (Z)-3-hexen-1-ol, and octanal significantly attracted the syrphid fly Paragus quadrifasciatus. The ladybird beetle Propylaea japonica, the green lacewing Chrysopa sinica, the bigeyed bug Geocoris pallidipennis, the syrphid fly Epistrophe balteata, and the parasitic wasp Campoletis chlorideae did not respond to any of the HIPVs tested. These results are discussed with regard to the potential of HIPVs as tools for recruiting natural enemies into cotton fields.


Assuntos
Gossypium , Insetos , Controle Biológico de Vetores , Feromônios/química , Animais , Cadeia Alimentar , Volatilização
15.
Environ Entomol ; 37(3): 774-81, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18559184

RESUMO

The autumn migration of Mythimna separata (Walker) (Lepidoptera: Noctuidae) across the Bohai Sea was observed with a scanning entomological radar and a searchlight trap at Beihuang, an island located in the center of the Bohai Gulf of northern China, in 2003-2006. During the autumn migration, M. separata flew at the altitudes of 50-500 m, with a displacement speed of 4-12 m/s, toward the southwest. Variations of area density of the radar targets and of catches in the searchlight trap through the night indicated that the flight duration of M. separata was approximately 10 h. Based on these observations, M. separata that originated in northeastern China (i.e., Liaoning, Jilin, and Heilongjiang provinces and part of the Inner Mongolia autonomous region) could immigrate into eastcentral China and subsequently to southern China (i.e., Fujian, Guangdong, and Guangxi provinces) within a week for overwintering.


Assuntos
Migração Animal , Mariposas/fisiologia , Animais , China , Feminino , Voo Animal , Luz , Masculino , Oceanos e Mares , Orientação , Radar , Estações do Ano
16.
Insect Sci ; 25(5): 765-777, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28459128

RESUMO

Niemann-Pick type C2 (NPC2) is a type of small soluble protein involved in lipid metabolism and triglyceride accumulation in vertebrates and arthropods. Recent studies have determined that NPC2 also participates in chemical communication of arthropods. In this work, two novel NPC2 proteins (MmedNPC2a and MmedNPC2b) in Microplitis mediator were identified. Real-time quantitative PCR (qPCR) analysis revealed that MmedNPC2a was expressed higher in the antennae than in other tissues of adult wasps compared with MmedNPC2b. Subsequent immunolocalization results demonstrated that NPC2a was located in the lymph cavities of sensilla placodea. To further explore the binding characterization of recombinant MmedNPC2a to 54 candidate odor molecules, a fluorescence binding assay was performed. It was found MmedNPC2a could not bind with selected fatty acids, such as linoleic acid, palmitic acid, stearic acid and octadecenoic acid. However, seven cotton volatiles, 4-ethylbenzaldehyde, 3,4-dimethylbenzaldehyde, ß-ionone, linalool, m-xylene, benzaldehyde and trans-2-hexen-1-al showed certain binding abilities with MmedNPC2a. Moreover, the predicted 3D model of MmedNPC2a was composed of seven ß-sheets and three pairs of disulfide bridges. In this model, the key binding residues for oleic acid in CjapNPC2 of Camponotus japonicus, Lue68, Lys69, Lys70, Phe97, Thr103 and Phe127, are replaced with Phe85, Ser86, His87, Leu113, Tyr119 and Ile143 in MmedNPC2a, respectively. We proposed that MmedNPC2a in M. mediator may play roles in perception of plant volatiles.


Assuntos
Proteínas de Insetos/genética , Receptores Odorantes/genética , Sensilas/metabolismo , Vespas/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Filogenia , Receptores Odorantes/metabolismo , Alinhamento de Sequência , Vespas/metabolismo
17.
Sci Rep ; 7(1): 16859, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203785

RESUMO

Pheromone binding proteins (PBPs) are widely distributed in insect antennae, and play important roles in the perception of sex pheromones. However, the detail mechanism of interaction between PBPs and odorants remains in a black box. Here, a predicted 3D structure of PBP1 of the serious agricultural pest, Helicoverpa armigera (HarmPBP1) was constructed, and the key residues that contribute to binding with the major sex pheromone components of this pest, (Z)-11- hexadecenal (Z11-16:Ald) and (Z)-9- hexadecenal (Z9-16:Ald), were predicted by molecular docking. The results of molecular simulation suggest that hydrophobic interactions are the main linkage between HarmPBP1 and the two aldehydes, and four residues in the binding pocket (Phe12, Phe36, Trp37, and Phe119) may participate in binding with these two ligands. Then site-directed mutagenesis and fluorescence binding assays were performed, and significant decrease of the binding ability to both Z11-16:Ald and Z9-16:Ald was observed in three mutants of HarmPBP1 (F12A, W37A, and F119A). These results revealed that Phe12, Trp37, and Phe119 are the key residues of HarmPBP1 in binding with the Z11-16:Ald and Z9-16:Ald. This study provides new insights into the interactions between pheromone and PBP, and may serve as a foundation for better understanding of the pheromone recognition in moths.


Assuntos
Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Atrativos Sexuais/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Insetos/química , Proteínas de Insetos/genética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Atrativos Sexuais/química
18.
PLoS One ; 12(7): e0180775, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28732030

RESUMO

Odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play important roles in transporting semiochemicals through the sensillar lymph to olfactory receptors in insect antennae. In the present study, twenty OBPs and three CSPs were identified from the antennal transcriptome of Microplitis mediator. Ten OBPs (MmedOBP11-20) and two CSPs (MmedCSP2-3) were newly identified. The expression patterns of these new genes in olfactory and non-olfactory tissues were investigated by real-time quantitative PCR (qPCR) measurement. The results indicated that MmedOBP14, MmedOBP18, MmedCSP2 and MmedCSP3 were primarily expressed in antennae suggesting potential olfactory roles in M. mediator. However, other genes including MmedOBP11-13, 15-17, 19-20 appeared to be expressed at higher levels in body parts than in antennae. Focusing on the functional characterization of MmedCSP3, immunocytochemistry and fluorescent competitive binding assays were conducted indoors. It was found that MmedCSP3 was specifically located in the sensillum lymph of olfactory sensilla basiconca type 2. The recombinant MmedCSP3 could bind several types of host insects odors and plant volatiles. Interestingly, three sex pheromone components of Noctuidae insects, cis-11-hexadecenyl aldehyde (Z11-16: Ald), cis-11-hexadecanol (Z11-16: OH), and trans-11-tetradecenyl acetate (E11-14: Ac), showed high binding affinities (Ki = 17.24-18.77 µM). The MmedCSP3 may be involved in locating host insects. Our data provide a base for further investigating the physiological roles of OBPs and CSPs in M. mediator, and extend the function of MmedCSP3 in chemoreception of M. mediator.


Assuntos
Himenópteros/metabolismo , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Animais , Antenas de Artrópodes/citologia , Antenas de Artrópodes/metabolismo , Western Blotting , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Himenópteros/citologia , Imuno-Histoquímica , Masculino , Filogenia , Reação em Cadeia da Polimerase , Ligação Proteica , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transcriptoma
19.
Artigo em Inglês | MEDLINE | ID: mdl-27085212

RESUMO

Adelphocoris suturalis Jakovlev (Hemiptera: Miridae) is an insect pest that causes severe agricultural damage to cotton and many other important crops. In insects, olfaction is very important throughout their lifetime. There are two groups of small soluble proteins, named odorant binding proteins (OBPs) and chemosensory proteins (CSPs), which are suggested to participate in the initial biochemical recognition steps of insect olfactory signal transduction. In this study, a total of 16 OBPs (12 classical OBPs and 4 plus-C OBPs) and 8 CSPs, were identified in the antennal transcriptome of A. suturalis. The sex- and tissue-specific profiles of these binding protein genes showed that 13 of the 16 OBP transcripts were highly expressed in the antennae of both sexes, and 4 OBPs (AsutOBP1, 4, 5 and 9) were expressed higher in the male antennae compared to the female antennae. Three CSPs (AsutCSP1, 4 and 5) were expressed specifically in the antennae of both sexes, and AsutCSP1 was expressed higher in the male antennae than in the female antennae. Our findings identify several novel OBP and CSP genes for further investigation of the olfactory system of A. suturalis at the molecular level.


Assuntos
Antenas de Artrópodes/metabolismo , Hemípteros/genética , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Transcriptoma/genética , Animais , Antenas de Artrópodes/química , Feminino , Perfilação da Expressão Gênica , Hemípteros/metabolismo , Hemípteros/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Receptores Odorantes/análise , Receptores Odorantes/genética
20.
Insect Sci ; 24(5): 789-797, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27265520

RESUMO

Odorant binding proteins (OBPs) are believed to be important for transporting semiochemicals through the aqueous sensillar lymph to the olfactory receptor cells within the insect antennal sensilla. Here, we injected AlinOBP4-siRNA into the conjunctivum between prothorax and mesothorax of the lucerne plant bug, Adelphocoris lineolatus and evaluated the silencing of AlinOBP4 by reverse transcription polymerase chain reaction (RT-PCR) analysis, quantitative real-time PCR (qPCR) test and electroantennogram (EAG) assay. The combination of RT-PCR and qPCR analyses revealed that the levels of messenger RNA transcript were significantly reduced ∼95% in AlinOBP4-siRNA-treated A. lineolatus males and ∼75% in RNAi-treated females within 48 hours. It was found that there are different EAG responses between male and female bugs when the AlinOBP4 gene was silenced by RNAi. The EAGs of A. lineolatus to two plant volatiles, tridecanal and hexyl alcohol, were reduced 9.09% and 79.45% in RNAi-treated males, 62.08% and 62.08% in RNAi-treated females compared to the controls, separately. Antennae of RNAi-treated bugs showed significantly lower electrophysiological responses to four sex pheromone analogs, butyl butanoate, 1-hexyl butyrate, (E)-2-hexenyl butyrate and hexyl hexanoate. The EAG recordings were reduced 35.43%, 35.24%, 39.96% and 78.47% in RNAi-treated males and 64.52%, 18.13%, 36.88% and 49.52% in RNAi-treated females, respectively. The results suggested that AlinOBP4 might play dual-roles in the identification of plant volatiles and sex pheromones. It was suspected that AlinOBP4 may have different functions in odor perception between male and female A. lineolatus.


Assuntos
Hemípteros/fisiologia , Feromônios/fisiologia , Receptores Odorantes/fisiologia , Sensilas/fisiologia , Animais , Feminino , Masculino , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA