Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 184(7): 1693-1705.e17, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770502

RESUMO

Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.


Assuntos
Hemípteros/genética , Proteínas de Insetos/metabolismo , Solanum lycopersicum/genética , Toxinas Biológicas/metabolismo , Animais , Transferência Genética Horizontal , Genes de Plantas , Glucosídeos/química , Glucosídeos/metabolismo , Hemípteros/fisiologia , Herbivoria , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Mucosa Intestinal/metabolismo , Solanum lycopersicum/metabolismo , Malonil Coenzima A/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Toxinas Biológicas/química
3.
Proc Natl Acad Sci U S A ; 120(14): e2300439120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996102

RESUMO

Ongoing host-pathogen interactions can trigger a coevolutionary arms race, while genetic diversity within the host can facilitate its adaptation to pathogens. Here, we used the diamondback moth (Plutella xylostella) and its pathogen Bacillus thuringiensis (Bt) as a model for exploring an adaptive evolutionary mechanism. We found that insect host adaptation to the primary Bt virulence factors was tightly associated with a short interspersed nuclear element (SINE - named SE2) insertion into the promoter of the transcriptionally activated MAP4K4 gene. This retrotransposon insertion coopts and potentiates the effect of the transcription factor forkhead box O (FOXO) in inducing a hormone-modulated Mitogen-activated protein kinase (MAPK) signaling cascade, leading to an enhancement of a host defense mechanism against the pathogen. This work demonstrates that reconstructing a cis-trans interaction can escalate a host response mechanism into a more stringent resistance phenotype to resist pathogen infection, providing a new insight into the coevolutionary mechanism of host organisms and their microbial pathogens.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Endotoxinas/farmacologia , Retroelementos/genética , Mariposas/metabolismo , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Resistência a Inseticidas/genética , Larva/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo
4.
PLoS Genet ; 18(2): e1010037, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35113858

RESUMO

The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/farmacologia , Proteínas de Bactérias/genética , Endotoxinas/farmacologia , Granulovirus/genética , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Inseticidas/metabolismo , Larva/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mariposas/genética , Mariposas/metabolismo , Fatores de Transcrição/genética
5.
Plant Cell Environ ; 47(7): 2660-2674, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619176

RESUMO

Plant viral diseases compromise the growth and yield of the crop globally, and they tend to be more serious under extreme temperatures and drought climate changes. Currently, regulatory dynamics during plant development and in response to virus infection at the plant cell level remain largely unknown. In this study, single-cell RNA sequencing on 23 226 individual cells from healthy and tomato chlorosis virus-infected leaves was established. The specific expression and epigenetic landscape of each cell type during the viral infection stage were depicted. Notably, the mesophyll cells showed a rapid function transition in virus-infected leaves, which is consistent with the pathological changes such as thinner leaves and decreased chloroplast lamella in virus-infected samples. Interestingly, the F-box protein SKIP2 was identified to play a pivotal role in chlorophyll maintenance during virus infection in tomato plants. Knockout of the SlSKIP2 showed a greener leaf state before and after virus infection. Moreover, we further demonstrated that SlSKIP2 was located in the cytomembrane and nucleus and directly regulated by ERF4. In conclusion, with detailed insights into the plant responses to viral infections at the cellular level, our study provides a genetic framework and gene reference in plant-virus interaction and breeding in the future research.


Assuntos
Folhas de Planta , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/virologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Folhas de Planta/virologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Célula Única , Doenças das Plantas/virologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Crinivirus/genética , Crinivirus/fisiologia
6.
PLoS Pathog ; 17(9): e1009917, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495986

RESUMO

Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans-regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P. xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK "road map", where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P. xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.


Assuntos
Infecções por Bactérias Gram-Positivas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Mariposas/metabolismo , Mariposas/microbiologia , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Infecções por Bactérias Gram-Positivas/veterinária , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas
7.
Proc Natl Acad Sci U S A ; 117(19): 10246-10253, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32327610

RESUMO

The evolution of insect resistance to pesticides poses a continuing threat to agriculture and human health. While much is known about the proximate molecular and biochemical mechanisms that confer resistance, far less is known about the regulation of the specific genes/gene families involved, particularly by trans-acting factors such as signal-regulated transcription factors. Here we resolve in fine detail the trans-regulation of CYP6CM1, a cytochrome P450 that confers resistance to neonicotinoid insecticides in the whitefly Bemisia tabaci, by the mitogen-activated protein kinase (MAPK)-directed activation of the transcription factor cAMP-response element binding protein (CREB). Reporter gene assays were used to identify the putative promoter of CYP6CM1, but no consistent polymorphisms were observed in the promoter of a resistant strain of B. tabaci (imidacloprid-resistant, IMR), which overexpresses this gene, compared to a susceptible strain (imidacloprid-susceptible, IMS). Investigation of potential trans-acting factors using in vitro and in vivo assays demonstrated that the bZIP transcription factor CREB directly regulates CYP6CM1 expression by binding to a cAMP-response element (CRE)-like site in the promoter of this gene. CREB is overexpressed in the IMR strain, and inhibitor, luciferase, and RNA interference assays revealed that a signaling pathway of MAPKs mediates the activation of CREB, and thus the increased expression of CYP6CM1, by phosphorylation-mediated signal transduction. Collectively, these results provide mechanistic insights into the regulation of xenobiotic responses in insects and implicate both the MAPK-signaling pathway and a transcription factor in the development of pesticide resistance.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Medicamentos/genética , Regulação da Expressão Gênica , Hemípteros/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Sistema Enzimático do Citocromo P-450/genética , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Hemípteros/metabolismo , Inseticidas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fosforilação , Regiões Promotoras Genéticas
8.
Pestic Biochem Physiol ; 195: 105543, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666614

RESUMO

The rapid evolution of pest resistance threatens the sustainable utilization of bioinsecticides such as abamectin, and so deciphering the molecular mechanisms affecting toxicity and resistance is essential for their long-term application. Historical studies of abamectin resistance in arthropods have mainly focused on mechanisms involving the glutamate-gated chloride channel (GluCl) targets, with the role of metabolic processes less clear. The two-spotted spider mite, Tetranychus urticae, is a generalist herbivore notorious for rapidly developing resistance to pesticides worldwide, and abamectin has been widely used for its control in the field. After reanalyzing previous transcriptome and RNA-seq data, we here identified an ABC transporter subfamily C gene in T. urticae named multidrug resistance-associated protein 1 (TuMRP1), whose expression differed between susceptible and resistant populations. Synergism bioassays with the inhibitor MK-571, the existence of a genetic association between TuMRP1 expression and susceptibility to abamectin, and the effect of RNA interference mediated silencing of TuMRP1 were all consistent with a direct role of this transporter protein in the toxicity of abamectin. Although ABC transporters are often involved in removing insecticidal compounds from cells, our data suggest either an alternative role for these proteins in the mechanism of action of abamectin or highlight an indirect association between their expression and abamectin toxicity.


Assuntos
Tetranychidae , Animais , Tetranychidae/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Ivermectina/toxicidade
9.
BMC Biol ; 20(1): 33, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120513

RESUMO

BACKGROUND: Biopesticides and transgenic crops based on Bacillus thuringiensis (Bt) toxins are extensively used to control insect pests, but the rapid evolution of insect resistance seriously threatens their effectiveness. Bt resistance is often polygenic and complex. Mutations that confer resistance occur in midgut proteins that act as cell surface receptors for the toxin, and it is thought they facilitate its assembly as a membrane-damaging pore. However, the mechanistic details of the action of Bt toxins remain controversial. RESULTS: We have examined the contribution of two paralogous ABC transporters and two aminopeptidases N to Bt Cry1Ac toxicity in the diamondback moth, Plutella xylostella, using CRISPR/Cas9 to generate a series of homozygous polygenic knockout strains. A double-gene knockout strain, in which the two paralogous ABC transporters ABCC2 and ABCC3 were deleted, exhibited 4482-fold resistance to Cry1A toxin, significantly greater than that previously reported for single-gene knockouts and confirming the mutual functional redundancy of these ABC transporters in acting as toxin receptors in P. xylostella. A double-gene knockout strain in which APN1 and APN3a were deleted exhibited 1425-fold resistance to Cry1Ac toxin, providing the most direct evidence to date for these APN proteins acting as Cry1Ac toxin receptors, while also indicating their functional redundancy. Genetic crosses of the two double-gene knockouts yielded a hybrid strain in which all four receptor genes were deleted and this resulted in a > 34,000-fold resistance, indicating that while both types of receptor need to be present for the toxin to be fully effective, there is a level of functional redundancy between them. The highly resistant quadruple knockout strain was less fit than wild-type moths, but no fitness cost was detected in the double knockout strains. CONCLUSION: Our results provide direct evidence that APN1 and APN3a are important for Cry1Ac toxicity. They support our overarching hypothesis of a versatile mode of action of Bt toxins, which can compensate for the absence of individual receptors, and are consistent with an interplay among diverse midgut receptors in the toxins' mechanism of action in a super pest.


Assuntos
Bacillus thuringiensis , Mariposas , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Antígenos CD13/genética , Antígenos CD13/metabolismo , Endotoxinas/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Larva/genética , Mariposas/genética
10.
Pestic Biochem Physiol ; 182: 105053, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249643

RESUMO

Deciphering the molecular mechanisms of insect resistance to Bacillus thuringiensis (Bt) based biotechnology products including Bt sprays and Bt crops is critical for the long-term application of Bt technology. Previously, we established that down-regulation of the ABC transporter gene PxABCG1, trans-regulated by the MAPK signaling pathway, contributed to high-level resistance to Bt Cry1Ac toxin in diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulatory mechanism was unknown. Herein, we identified putative binding sites (PBSs) of the transcription factor (TF) POUM1 in the PxABCG1 promoter and used a dual-luciferase reporter assay (DLRA) and yeast one-hybrid (Y1H) assay to reveal that POUM1 activates PxABCG1 via interaction with one of these sites. The expression of POUM1 was significantly decreased in the midgut tissue of Cry1Ac-resistant P. xylostella strains compared to a Cry1Ac-susceptible P. xylostella strain. Silencing of POUM1 expression resulted in reduced expression of the PxABCG1 gene and an increase in larval tolerance to Bt Cry1Ac toxin in the Cry1Ac-susceptible P. xylostella strain. Furthermore, silencing of PxMAP4K4 expression increased the expression of both POUM1 and PxABCG1 genes in the Cry1Ac-resistant P. xylostella strain. These results indicate that the POUM1 induces PxABCG1 expression, while the activated MAPK cascade represses PxABCG1 expression thus reducing Cry1Ac susceptibility in P. xylostella. This result deepens our understanding of the transcriptional regulatory mechanism of midgut Cry receptor genes and the molecular basis of the evolution of Bt resistance in insects.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Larva/genética , Larva/metabolismo , Mariposas/genética , Mariposas/metabolismo , Fatores de Transcrição/genética
11.
Appl Environ Microbiol ; 87(13): e0046621, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893113

RESUMO

Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that mitogen-activated protein kinase (MAPK)-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulation mechanism remains enigmatic. Here, the PxABCB1 promoter in Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella strains was cloned and analyzed and found to contain a putative Jun binding site (JBS). A dual-luciferase reporter assay and yeast one-hybrid assay demonstrated that the transcription factor PxJun repressed PxABCB1 expression by interacting with this JBS. The expression levels of PxJun were increased in the midguts of all resistant strains compared to the susceptible strain. Silencing of PxJun expression significantly elevated PxABCB1 expression and Cry1Ac susceptibility in the resistant NIL-R strain, and silencing of PxMAP4K4 expression decreased PxJun expression and also increased PxABCB1 expression. These results indicate that MAPK-activated PxJun suppresses PxABCB1 expression to confer Cry1Ac resistance in P. xylostella, deepening our understanding of the transcriptional regulation of midgut Cry receptor genes and the molecular basis of insect resistance to Bt Cry toxins. IMPORTANCE The transcriptional regulation mechanisms underlying reduced expression of Bt toxin receptor genes in Bt-resistant insects remain elusive. This study unveils that a transcription factor PxJun activated by the MAPK signaling pathway represses PxABCB1 expression and confers Cry1Ac resistance in P. xylostella. Our results provide new insights into the transcriptional regulation mechanisms of midgut Cry receptor genes and deepen our understanding of the molecular basis of insect resistance to Bt Cry toxins. To our knowledge, this study identified the first transcription factor that can be involved in the transcriptional regulation mechanisms of midgut Cry receptor genes in Bt-resistant insects.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mariposas , Proteínas Proto-Oncogênicas c-jun/genética , Animais , Larva/genética , Larva/metabolismo , Mariposas/genética , Mariposas/metabolismo
12.
Genomics ; 112(3): 2291-2301, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31899294

RESUMO

The parasitoid of whiteflies Encarsia formosa has been widely applied to reduce whitefly-mediated damage on vegetables and ornamental plants grown in greenhouses. Although its chemosensory behavior has been described, the mechanism by which E. formosa recognizes chemical volatiles at the molecular level remains unknown. In this study, we obtained 66,632 unigenes from antennae transcriptomic architecture of E. formosa, of which 19,473 (29.2%) were functionally annotated. All that matters is that we manually identified 39 odorant-binding proteins (OBPs) from above dataset, and further investigated the tissue and stage-specific expression profiles of all identified OBP genes by real-time quantitative PCR. Among these OBP genes, 32 were enriched in antennae, and 2 in body. In addition, 4 OBPs were highly expressed in pupae, and 32 in 6-hour-age adults after eclosion. In addition to identifying OBP genes from E. formosa, this study provides a molecular basis for further functional studies of OBPs and the interactions of hosts and parasitic wasps.


Assuntos
Antenas de Artrópodes/metabolismo , Proteínas de Insetos/genética , Receptores Odorantes/genética , Vespas/genética , Animais , Antenas de Artrópodes/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Filogenia , RNA-Seq , Receptores Odorantes/classificação , Receptores Odorantes/metabolismo , Transcriptoma , Vespas/crescimento & desenvolvimento , Vespas/metabolismo
13.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198929

RESUMO

The molecular mechanisms of insect resistance to Cry toxins generated from the bacterium Bacillus thuringiensis (Bt) urgently need to be elucidated to enable the improvement and sustainability of Bt-based products. Although downregulation of the expression of midgut receptor genes is a pivotal mechanism of insect resistance to Bt Cry toxins, the underlying transcriptional regulation of these genes remains elusive. Herein, we unraveled the regulatory mechanism of the downregulation of the ABC transporter gene PxABCG1 (also called Pxwhite), a functional midgut receptor of the Bt Cry1Ac toxin in Plutella xylostella. The PxABCG1 promoters of Cry1Ac-susceptible and Cry1Ac-resistant strains were cloned and analyzed, and they showed clear differences in activity. Subsequently, a dual-luciferase reporter assay, a yeast one-hybrid (Y1H) assay, and RNA interference (RNAi) experiments demonstrated that a cis-mutation in a binding site of the Hox transcription factor Antennapedia (Antp) decreased the promoter activity of the resistant strain and eliminated the binding and regulation of Antp, thereby enhancing the resistance of P. xylostella to the Cry1Ac toxin. These results advance our knowledge of the roles of cis- and trans-regulatory variations in the regulation of midgut Cry receptor genes and the evolution of Bt resistance, contributing to a more complete understanding of the Bt resistance mechanism.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Toxinas de Bacillus thuringiensis/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Receptores de Superfície Celular/genética , Animais , Bacillus thuringiensis/genética , Endotoxinas/genética , Lepidópteros/efeitos dos fármacos , Lepidópteros/genética , Mutação/genética , Regiões Promotoras Genéticas/genética
14.
Pestic Biochem Physiol ; 163: 23-30, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973862

RESUMO

Insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) have been widely used to control agricultural pests in both foliage sprays and transgenic crops. Nevertheless, rapid evolution of insect resistance to Cry toxins requires elucidation of the molecular mechanisms involved in Cry resistance. Two proposed models have been described to explain the toxicity of Cry proteins, the classic model states that Cry protoxin is activated by midgut proteases resulting in activated toxin that binds to receptors and forms a pore in the midgut cells triggering larval death, and the newly proposed dual model of the mode of action of Bt Cry toxins states that protoxin and activated toxins may have different mechanisms of action since several resistant strains to activated Cry toxins are still susceptible to the same Cry-protoxin. Protoxin activation by midgut proteases is a key step in both models. Herein, we evaluated Cry1Ac protoxin activation in a susceptible Plutella xylostella (L.) strain (DBM1Ac-S) and in the near-isogenic strain (NIL-R) with high field-evolved Cry1Ac resistance. Previous work showed that Cry1Ac resistance in NIL-R correlates with reduced binding to midgut receptors due to enhanced MAPK signaling pathway and down regulation of ABCC2 receptor. However, reduced midgut trypsin levels and altered midgut protease gene transcription were also observed in the Cry1Ac-resistant field isolated strain that is parent of the NIL-R strain. Therefore, we analyzed the midgut protease activities in both DBM1Ac-S and NIL-R strains. Detection of enzymatic activities showed that caseinolytic protease, trypsin and chymotrypsin activities were not significantly different between the susceptible and resistant strains. Furthermore, treatment with different trypsin or chymotrypsin inhibitors, such as Nα-tosyl-l-lysine chloromethyl ketone (TLCK) or Np-tosyl-L-phenylalanine chloromethyl ketone (TPCK) did not affect the susceptibility to Cry1Ac protoxin of the DBM1Ac-S and NIL-R larvae. Bioassay results indicated that the NIL-R larvae showed similar resistant levels to both Cry1Ac protoxin and trypsin-activated toxin. Taken together, our results demonstrated that high-level field-evolved Cry1Ac resistance in the NIL-R strain is independent of Cry1Ac protoxin activation and the specific protoxin mechanism of action. This discovery will strengthen our comprehensive understanding of the complex mechanistic basis of Bt resistance in different insects.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Proteínas de Insetos , Resistência a Inseticidas , Larva , Peptídeo Hidrolases
15.
Pestic Biochem Physiol ; 160: 79-86, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519260

RESUMO

Peptidoglycan recognition proteins (PGRPs) are important recognition receptors which play a critical role in signal identification and transmission in Toll or immune deficiency (IMD) pathways, particularly when pathogens evade and circumvent reactive oxygen species. Antimicrobial peptides (AMPs) synthesis can be activated by these signals to further eliminate pathogens. In this study, we cloned and characterized three different PGRP genes in Plutella xylostella strains, DBM1Ac-S, DBM1Ac-R and a field strain (DBMF). The results showed that PGRP1 belongs to the PGRP-SA family, PGRP2 to PGRP-LB, and PGRP3 to PGRP-LF. Moreover, PGRP1 expressed the highest transcript level, followed by PGRP3 and PGRP2, in two tissues including the gut and the larval carcass tissues of the DBM1Ac-S strain. Furthermore, altered expression levels of PGRP1-3 genes were detected in both gut and carcass tissues. Moreover, the DBM1Ac-R strain had the highest phenol oxidase (PO) activity among these three strains. The characterization of PGRP gene expression and PO activity in DBM1Ac-S, DBM1Ac-R and DBM-F provides insights into their important physiological roles in the immune system of P. xylostella exposed to Bt Cry1Ac toxin.


Assuntos
Proteínas de Bactérias/farmacologia , Proteínas de Transporte/genética , Citocinas/genética , Endotoxinas/farmacologia , Expressão Gênica , Proteínas Hemolisinas/farmacologia , Monofenol Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Transporte/química , Clonagem Molecular , Lepidópteros , Homologia de Sequência de Aminoácidos
16.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600879

RESUMO

The whitefly (Bemisia tabaci), an important invasive pest that causes severe damage to crops worldwide, has developed resistance to a variety of insecticides. Carboxylesterases (COEs) are important multifunctional enzymes involved in the growth, development, and xenobiotic metabolism of insects. However, systematic studies on the COEs of B. tabaci are scarce. Here, 42 putative COEs in different functional categories were identified in the Mediterranean species of B. tabaci (B. tabaci MED) based on a genome database and neighbor-joining phylogeny. The expression patterns of the COEs were affected by the development of B. tabaci. The expression levels of six COEs were positively correlated with the concentration of imidacloprid to which B. tabaci adults were exposed. The mortality of B. tabaci MED adults fed dsBTbe5 (67.5%) and dsBTjhe2 (58.4%) was significantly higher than the adults fed dsEGFP (41.1%) when treated with imidacloprid. Our results provide a basis for functional research on COEs in B. tabaci and provide new insight into the imidacloprid resistance of B. tabaci.


Assuntos
Hidrolases de Éster Carboxílico/genética , Estudo de Associação Genômica Ampla , Hemípteros/enzimologia , Hemípteros/genética , Animais , Hidrolases de Éster Carboxílico/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma de Inseto , Estudo de Associação Genômica Ampla/métodos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Filogenia , Transcriptoma
17.
Mol Cell Proteomics ; 15(6): 1791-807, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26902207

RESUMO

The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Proteínas de Insetos/análise , Mariposas/genética , Proteogenômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Processamento Alternativo , Animais , Genoma de Inseto , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Larva , Anotação de Sequência Molecular , Mariposas/metabolismo , Especificidade de Órgãos
18.
PLoS Genet ; 11(4): e1005124, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875245

RESUMO

Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/farmacologia , Agentes de Controle Biológico/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Sistema de Sinalização das MAP Quinases , Transportadores de Cassetes de Ligação de ATP/genética , Fosfatase Alcalina/genética , Animais , Bacillus/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Agentes de Controle Biológico/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos/genética , Mucosa Intestinal/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/genética , Mariposas/metabolismo , Ligação Proteica
19.
Int J Mol Sci ; 19(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469390

RESUMO

Transcription factors (TFs) play essential roles in the transcriptional regulation of functional genes, and are involved in diverse physiological processes in living organisms. The fruit fly Drosophila melanogaster, a simple and easily manipulated organismal model, has been extensively applied to study the biological functions of TFs and their related transcriptional regulation mechanisms. It is noteworthy that with the development of genetic tools such as CRISPR/Cas9 and the next-generation genome sequencing techniques in recent years, identification and dissection the complex genetic regulatory networks of TFs have also made great progress in other insects beyond Drosophila. However, unfortunately, there is no comprehensive review that systematically summarizes the structures and biological functions of TFs in both model and non-model insects. Here, we spend extensive effort in collecting vast related studies, and attempt to provide an impartial overview of the progress of the structure and biological functions of current documented TFs in insects, as well as the classical and emerging research methods for studying their regulatory functions. Consequently, considering the importance of versatile TFs in orchestrating diverse insect physiological processes, this review will assist a growing number of entomologists to interrogate this understudied field, and to propel the progress of their contributions to pest control and even human health.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Fatores de Transcrição/genética , Animais , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Evolução Molecular , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ativação Transcricional
20.
Pestic Biochem Physiol ; 132: 108-17, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27521921

RESUMO

The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted.


Assuntos
Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Proteínas de Insetos/metabolismo , Inseticidas , Mariposas/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Eletroforese em Gel Bidimensional , Trato Gastrointestinal , Proteínas de Insetos/efeitos dos fármacos , Resistência a Inseticidas , Larva , Mariposas/efeitos dos fármacos , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA