Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Eng Online ; 22(1): 9, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747170

RESUMO

BACKGROUND: Impairments of trunk movements in gait of stroke are often reported. Ankle foot orthosis (AFO) is commonly used to improve gait of stroke; however, the effect of different types of AFOs on the pelvic and thoracic movements during gait in stroke has not been clarified. METHODS: Thirty-four patients with stroke were randomly allocated to undergo 2 weeks of gait training by physiotherapists while wearing a rigid AFO (RAFO) with a fixed ankle or an AFO with an oil damper (AFO-OD) that provides plantarflexion resistance and free dorsiflexion. A motion capture system was used for measurements of shod gait without AFO at baseline and with and without AFO after gait training. Two-way repeated ANOVA, Wilcoxon signed-rank test, and Mann-Whitney U test were performed for the data after the gait training to know the effect of different kinds of AFOs. RESULTS: Twenty-nine patients completed the study (AFO-OD group: 14, RAFO group: 15). Interactions were found in pelvic rotation angle, change of shank-to-vertical angle (SVA) in the stance, and paretic to non-paretic step length, which increased in AFO-OD group with AFOs (p < 0.05), while the SVA decreased in RAFO group with AFOs (p < 0.05). The main effects were found in pelvic rotation at the contralateral foot off, and thoracic tilt at foot off when an AFO was worn. The change of SVA in stance was positively correlated with the pelvic rotation in the AFO-OD group (r = 0.558). At initial contact, pelvic rotation was positively correlated with thoracic rotation in both groups. CONCLUSIONS: The findings in 29 patients with stroke showed that pelvic and thoracic movements especially the rotation were affected by the type of AFOs. Pelvic rotation and lower limb kinematics exhibited significant improvements with AFO-OD, reflecting more desirable gait performance. On the other hand, the increase in thoracic in-phase rotation might expose the effect of insufficient trunk control and dissociation movement. Trial registration UMIN000038694, Registered 21 November 2019, https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_his_list.cgi?recptno=R000044048 .


Assuntos
Órtoses do Pé , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Tornozelo , Articulação do Tornozelo , Fenômenos Biomecânicos , Marcha , Amplitude de Movimento Articular , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia
2.
Int J Nanomedicine ; 19: 993-1016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299194

RESUMO

Background: The M1/M2 polarization of intestinal macrophages exerts an essential function in the pathogenesis of ulcerative colitis (UC), which can be adjusted to alleviate the UC symptoms. Purpose: A kind of pH-sensitive lipid calcium phosphate core-shell nanoparticles (NPs), co-loading with dexamethasone (Dex) and its water-soluble salts, dexamethasone sodium phosphate (Dsp), was constructed to comprehensively regulate macrophages in different states towards the M2 phenotype to promote anti-inflammatory effects. Methods: Dex and Dsp were loaded in the outer lipid shell and inner lipid calcium phosphate (Cap) core of the LdCaPd NPs, respectively. Then, the morphology of NPs and methods for determining drug concentration were investigated, followed by in vitro protein adsorption, stability, and release tests. Cell experiments evaluated the cytotoxicity, cellular uptake, and macrophage polarization induction ability of NPs. The in vivo distribution and anti-inflammatory effect of NPs were evaluated through a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced BALB/c mice ulcerative colitis model. Results: The LdCaPd NPs showed a particle size of about 200 nm and achieved considerable loading amounts of Dex and Dsp. The in vitro and in vivo studies revealed that in the acidic UC microenvironment, the cationic lipid shell of LdCaPd underwent protonated dissociation to release Dex first for creating a microenvironment conducive to M2 polarization. Then, the exposed CaP core was further engulfed by M1 macrophages to release Dsp to restrict the pro-inflammatory cytokines production by inhibiting the activation and function of the nuclear factor kappa-B (NF-κB) through activating the GC receptor and the NF kappa B inhibitor α (I-κBα), respectively, ultimately reversing the M1 polarization to promote the anti-inflammatory therapy. Conclusion: The LdCaPd NPs accomplished the sequential release of Dex and Dsp to the UC site and the inflammatory M1 macrophages at this site, promoting the regulation of macrophage polarization to accelerate the remission of UC symptoms.


Assuntos
Colite Ulcerativa , Colite , Nanopartículas , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Fosfatos de Cálcio/farmacologia , Lipídeos/efeitos adversos
3.
Drug Des Devel Ther ; 17: 191-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36718245

RESUMO

Background: As the first-line drug to treat ulcerative colitis (UC), long-term use of glucocorticoids (GCs) produces severe toxic and side effects. Local administration as enema can increase the local GCs concentrations and reduce systemic exposure to high oral doses by directly delivering GCs to the inflammation site in the distal colorectum. However, UC patients are often accompanied by diarrhea, leading to the short colonic residence time of GCs and failure to exert their function fully. Purpose: A kind of mucoadhesive nanoparticles (NPs) loading different dexamethasone derivatives (DDs) were developed, which could attach to the positively charged inflammatory colonic mucosa through electrostatic adsorption after administered by enema, thereby improving the local concentration and achieving effective targeted therapy for UC. Methods: Two DDs, dexamethasone hemisuccinate and dexamethasone phosphate, were synthesized. In NPs preparation, The core PEI-DDs NPs were built by the electrostatic adsorption of DDs and the cationic polymer polyethyleneimine (PEI). Then, the natural polyanionic polysaccharide sodium alginate (SA) was electronically coated around NPs to construct the final SA-PEI-DDs NPs, followed by the in vitro stability and release tests, in vitro and in vivo colonic mucosal adhesion tests. In the in vivo anti-UC test, the experimental colitis mice were induced by 2,4,6-trinitrobenzenesulfonic acid. The body weight and disease activity index changes were measured, and the myeloperoxidase activity, pro-inflammatory cytokines concentration, and hematoxylin and eosin staining were also investigated to evaluate the therapeutic effect of NPs. Results: The structures of two DDs were demonstrated by 1H-NMR and MS. Both NPs were negatively charged and achieved high loading efficiency of DDs, while their particle sizes were significantly different. NPs showed good stability and sustained release properties in the simulated colonic environment. Moreover, the negative charge on the of NPs surface made them easier to adhere to the positively charged inflammatory colonic mucosa, thereby enhancing the enrichment and retention of DDS in the colitis site. Furthermore, the NPs exhibited better therapeutic effects than free Dex on the experimental colitis mice induced by TNBS through the enema rectal. Conclusion: These results indicated the mucoadhesive NPs as a kind of novel nano-enema showed great potential to achieve efficient treatment on UC.


Assuntos
Colite Ulcerativa , Colite , Nanopartículas , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Colo , Colite/tratamento farmacológico , Nanopartículas/química , Dexametasona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA