Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 149(5): 679-698, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30311190

RESUMO

The anti-diabetic drug and peroxisome proliferator-activated receptor-gamma (PPARγ) agonist, rosiglitazone, alters astrocyte activation; however, its mechanism remains less-known. We hypothesized participation of epidermal growth factor receptor (EGFR), known to control astrocyte reactivity. We first detected that rosiglitazone promoted glial fibrillary acidic protein (GFAP) expression in primary astrocytes as well as the mouse cerebral cortex, associated with increased EGFR activation. Screening for EGFR ligands revealed a rosiglitazone-mediated increase of heparin-binding epidermal growth factor (HB-EGF) in astrocytes, resulting in HB-EGF release into culture medium and mouse cerebrospinal fluid too. Treatment with HB-EGF-siRNA and EGFR inhibitors showed that the rosiglitazone-induced HB-EGF and p-EFGR were interdependent, which participated in GFAP increase. Interestingly, we observed that rosiglitazone could induce cellular and secreted-HB-EGF in neurons also, contributing toward the activated EGFR-induced GFAP in astrocytes. Probing whether these effects of rosiglitazone were PPARγ-linked, revealed potential PPARγ-responsive elements within HB-EGF gene. Moreover, gel-shift, site-directed mutagenesis, chromatin-immunoprecipitation and luciferase-reporter assays demonstrated a PPARγ-dependent HB-EGF transactivation. Subsequently, we examined effects of rosiglitazone in a high-fat diet-fed diabetes mouse model, and supporting observations in the normal cortical cells, identified a rosiglitazone-induced GFAP, astrocyte and neuronal HB-EGF and secreted-HB-EGF in the cerebral cortex of diabetic mice. Moreover, assessing relevance of increased HB-EGF and GFAP revealed an anti-apoptotic role of rosiglitazone in the cerebral cortex, supported by a GFAP-siRNA as well as HB-EGF-siRNA-mediated increase in cleaved-caspase 3 and 9 levels in the rosiglitazone-treated astrocyte-neuron coculture. Overall, our study indicates that rosiglitazone may protect the brain, via a PPARγ-dependent HB-EGF/EGFR signaling and increased GFAP.


Assuntos
Astrócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Neurônios/efeitos dos fármacos , Rosiglitazona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Proteína Glial Fibrilar Ácida/biossíntese , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/biossíntese , Hipoglicemiantes/efeitos adversos , Camundongos , Neurônios/metabolismo , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Regulação para Cima
2.
Eur J Pharmacol ; 854: 354-364, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822393

RESUMO

Obesity results in the chronic activation of innate immune system and subsequently sets in diabetes. Aim of the study was to investigate the immunometabolic role of brown adipose tissue (BAT) in the obesity. We performed both BAT transplantation as well as extirpation experiments in the mouse model of high-fat diet (HFD)-induced obesity. We carried out immune cell profiling in the stromal vascular fraction (SVF) isolated from epididymal white adipose tissue (eWAT). BAT transplantation reversed HFD-induced increase in body weight gain and insulin resistance without altering diet intake. Importantly, BAT transplantation attenuated the obesity-associated adipose tissue inflammation in terms of decreased pro-inflammatory M1-macrophages, cytotoxic CD8a T-cells and restored anti-inflammatory regulatory T-cells (Tregs) in the eWAT. BAT transplantation also improved endogenous BAT activity by elevating protein expression of browning markers (UCP-1, PRDM16 and PGC1α) in it. In addition, BAT transplantation promoted the eWAT expression of various genes involved in fatty acid oxidation (such as Elvol3 and Tfam,). In contrast, extirpation of the interscapular BAT exacerbated HFD-induced obesity, insulin resistance and adipose tissue inflammation (by increasing M1 macrophages, CD8a T-cell and decreasing Tregs in eWAT). Taken together, our results suggested an important role of BAT in combating obesity-associated metabolic complications. These results open a novel therapeutic option to target obesity and related metabolic disorders like type 2 diabetes.


Assuntos
Tecido Adiposo Marrom/transplante , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Biomarcadores/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA