Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 43(1): 142-169, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34957903

RESUMO

Bone metabolism constitutes the intricate processes of matrix deposition, mineralization, and resorption. Any imbalance in these processes leads to traumatic bone injuries and serious disease conditions. Therefore, bone remodeling plays a crucial role during the regeneration process maintaining the balance between osteoblastogenesis and osteoclastogenesis. Currently, numerous phytobiologics are emerging as the new therapeutics for the treatment of bone-related complications overcoming the synthetic drug-based side effects. They can either target osteoblasts, osteoclasts, or both through different mechanistic pathways for maintaining the bone remodeling process. Although phytobiologics have been widely used since tradition for the treatment of bone fractures recently, the research is accentuated toward the development of osteogenic phytobioactives, constituent-based drug designing models, and efficacious delivery of the phytobioactives. To achieve this, different plant extracts and successful isolation of their phytoconstituents are critical for osteogenic research. Hence, this review emphasizes the phytobioactives based research specifically enlisting the plants and their constituents used so far as bone therapeutics, their respective isolation procedures, and nanotechnological interventions in bone research. Also, the review enlists the vast array of folklore plants and the newly emerging nano-delivery systems in treating bone injuries as the future scope of research in the phytomedicinal orthopedic applications.


Assuntos
Remodelação Óssea , Osteoclastos , Osteoclastos/metabolismo , Osteogênese , Osteoblastos/metabolismo , Extratos Vegetais/farmacologia , Diferenciação Celular
2.
Small ; 18(29): e2201462, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35758545

RESUMO

Osseous tissue repair has advanced due to the introduction of tissue engineering. The key elements required while engineering new tissues involve scaffolds, cells, and bioactive cues. The macrostructural to the nanostructural framework of such complex tissue has engrossed the intervention of nanotechnology for efficient neo-bone formation. Gold nanoparticles (GNPs) have recently gained interest in bone tissue regeneration due to their multimodal functionality. They are proven to modulate the properties of scaffolds and the osteogenic cells significantly. GNPs also influence different metabolic functions within the body, which directly or indirectly govern the mechanism of bone regeneration. Therefore, this review highlights nanoparticle-mediated osteogenic development, focusing on different aspects of GNPs ranging from scaffold modulation to cellular stimulation. The toxic aspects of gold nanoparticles studied so far are critically explicated, while further insight into the advancements and prospects of these nanoparticles in bone regeneration is also highlighted.


Assuntos
Nanopartículas Metálicas , Engenharia Tecidual , Regeneração Óssea , Ouro/química , Nanopartículas Metálicas/química , Osteogênese , Medicina Regenerativa , Alicerces Teciduais/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-36749176

RESUMO

Developing advanced methods for effective bone reconstructive strategies in case of critical bone defects caused by tumor resection, trauma, and other implant-related complications remains a challenging problem in orthopedics. In the clinical management of bone diseases, there is a paradigm shift in using local drugs at the injury site; however, the dead space created during the surgical debridement of necrotic bone and soft tissues (periosteum and underlying muscle) leads to ineffective bone formation, thereby leading to secondary complications, and thus calls for better regenerative approaches. In this study, we have utilized an exosome-functionalized doxorubicin-loaded biodegradable nanocement (NC)-based carrier along with a Cissus quadrangularis (CQ) extract-laden antioxidant herbal membrane for simultaneously managing the periosteum as well as bone formation in the tumor resection model of osteosarcoma. We initially evaluated the efficacy of scaffolds for in vitro mineralization and bone formation. To examine the in vivo effectiveness, we developed a human osteosarcoma cell line (Saos-2)-induced tumor xenograft model with a critical-sized bone defect. The findings revealed that doxorubicin released from NC was successful in killing the tumor cells and was present even after 30 days of implantation. Additionally, the incorporation of exosomes aided the bone formation, resulting in around a 2.6-fold increase in the bone volume compared to the empty group as evaluated by micro-CT. The herbal membrane assisted in the development of periosteum and mineralizing bone callous as validated through histological and immunofluorescence analysis. Thus, our findings describe a one-step biomaterial-based cell-free approach to regenerate bone in osteosarcoma and prevent further fracture due to the complete development of periosteum and lost bone.

4.
Int J Pharm ; 642: 123110, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37302672

RESUMO

Developing biofunctionalized ceramic bone substitutes with phytobioactives for their sustained delivery is highly desired to enhance the osteo-active potential of ceramic bone substitutes, reduce the systemic toxicity of synthetic drugs, and increase the bioavailability of phytobioactives. The present work highlights the local delivery of phytobioactives of Cissus quadrangularis (CQ) through nano-hydroxyapatite (nHAP) based ceramic nano-cement. The phytoconstituent profiling represented the optimized CQ fraction to be rich in osteogenic polyphenols and flavonoids like quercetin, resveratrol, and their glucosides. Further, CQ phytobioactives-based formulation was biocompatible, increased bone formation, calcium deposition, proliferation, and migration of cells with simultaneous alleviation of cellular oxidative stress. In the in vivo critical-sized bone defect model, enhanced formation of highly mineralized tissue (BV mm3) in CQ phytobioactives functionalized nano-cement (10.5 ± 2 mm3) were observed compared to the control group (6.5 ± 1.2 mm3). Moreover, the addition of CQ phytobioactives to the bone nano-cement increased the fractional bone volume (BV/TV%) to 21 ± 4.2% compared to 13.1 ± 2.5% in non-functionalized nano-cement. The results demonstrated nHAP-based nano-cement as a carrier for phytobioactives which could be a promising approach for neo-bone formation in different bone defect conditions.


Assuntos
Substitutos Ósseos , Cissus , Osteogênese , Durapatita , Cerâmica
5.
Int J Biol Macromol ; 236: 123962, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907160

RESUMO

Lipoteichoic acid (LTA) is a key surface component of probiotic lactobacilli that is involved in important cellular functions including cross talk with the host immune cells. In this study, the anti-inflammatory and ameliorative properties of LTA from probiotic lactobacilli strains were assessed in in vitro HT-29 cells and in vivo colitis mice. The LTA was extracted with n-butanol and its safety was confirmed based on its endotoxin content and cytotoxicity in HT-29 cells. In the Lipopolysaccharide stimulated HT-29 cells, the LTA from the test probiotics evoked a visible but non-significant increase in IL-10 and decrease in TNF-α levels. During the colitis mice study, probiotic LTA treated mice showed substantial improvement in external colitis symptoms, disease activity score and weight gain. The treated mice also showed improvements in key inflammatory markers such as the gut permeability, myeloperoxidase activity and histopathological damages in colon, although non-significant improvements were recorded for the inflammatory cytokines. Furthermore, structural studies by NMR and FTIR revealed increased level of D-alanine substitution in the LTA of LGG strain over MTCC5690. The present study demonstrates the ameliorative effect of LTA as a postbiotic component from probiotics which can be helpful in building effective strategies for combating gut inflammatory disorders.


Assuntos
Colite , Probióticos , Humanos , Camundongos , Animais , Lactobacillus , Lipopolissacarídeos/química , Células HT29 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação , Citocinas , Probióticos/uso terapêutico
6.
Sci Rep ; 13(1): 16420, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775650

RESUMO

Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.


Assuntos
Antiarrítmicos , Fibrilação Atrial , Humanos , Animais , Cobaias , Cães , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Fibrilação Ventricular/tratamento farmacológico , Cálcio , Fibrilação Atrial/tratamento farmacológico , Músculos Papilares , Modelos Animais
7.
Front Microbiol ; 12: 679773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539597

RESUMO

The increase in concern from viable cells of probiotics specifically in acute inflammatory conditions has led to the emergence of the concept of postbiotics as a safer alternative therapy in the field of health and wellness. The aim of the present study was to evaluate the efficacy of surface proteins from three probiotic strains in dextran sodium sulfate and trinitrobenzenesulphonic acid = induced colitis mouse models. The molecular weight of total surface proteins extracted from the three probiotic strains ranged from ∼25 to ∼250 kDa with the presence of negligible levels of endotoxins. Surface layer proteins (SLPs) (∼45 kDa) were found to be present only in the Lactobacillus acidophilus NCFM strain. In the in vivo study, significant differences were not observed in the weight loss and general appetite, however, the decrease in colon length was apparent in TNBS colitis control mice. Further, the administration of these surface proteins significantly reversed the histopathological damages induced by the colitogens and improved the overall histological score. The oral ingestion of these surface proteins also led to a decrease in myeloperoxidase activity and TNF-α expression while the IL-10 levels significantly increased for the strain NCFM followed by MTCC 5690 and MTCC 5689. Overall, the present study signifies the ameliorative role of probiotic surface proteins in colitis mice, thereby, offering a potential and safer alternative for the management of inflammatory bowel disorders.

8.
Biomed Pharmacother ; 130: 110754, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34321168

RESUMO

Bone injuries occur due to various traumatic and disease conditions. Healing of bone injury occurs via a multi-stage intricate process. Body has the potential to rectify most of the bone injuries but some severe traumatic cases with critical size defects may require interventions. Autografts are still considered the "gold standard" for fracture healing but due to limitations associated with it, new alternatives are warranted. The field of orthobiologics has provided novel approaches using scaffolds, bioactive molecules, stem cells for the treatment of bone defects. Phyto-bioactives have been widely used in alternative medicine and folklore practices for curing bone ailments. It is believed that different bioactive constituents in plants work synergistically to give the therapeutic efficacy. Bioactives in plants extracts act upon different signal transduction pathways aiding in bone healing. The present review focuses on the use, chemical composition, mode of delivery, mechanism of action, and possible future strategies of three medicinal plants popularly used in traditional medicine for bone healing: Cissus quadrangularis, Withania somnifera and Tinospora cordifolia. Plants extracts seem to be a natural and non-toxic therapeutic alternative in treating bone injuries. Most of the studies on bone healing for these plants have reported oral administration of the extracts and presented them as a safe alternative without any side effects despite giving higher doses. Forthcoming studies could be directed towards the local delivery of extracts at the defect site. Unification of herbal extracts and orthobiologics could be an interesting direction in the field of bone healing in future. The present review intends to provide a bird's eye view of different strategies used in bone healing, mechanisms involved and future direction of advancements using phytobioactives and orthobiologics.


Assuntos
Regeneração Óssea , Medicina Tradicional , Extratos Vegetais/uso terapêutico , Animais , Biomarcadores , Fraturas Ósseas/etiologia , Fraturas Ósseas/metabolismo , Fraturas Ósseas/terapia , Humanos , Medicina Tradicional/métodos , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA