Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882831

RESUMO

Plants have developed an array of mechanisms to protect themselves against pathogen invasion. The deployment of defense mechanisms is imperative for plant survival, but can come at the expense of plant growth, leading to the 'growth-defense trade-off' phenomenon. Following pathogen exposure, plants can develop resistance to further attack. This is known as induced resistance, or priming. Here, we investigated the growth-defense trade-off, examining how defense priming via systemic acquired resistance (SAR), or induced systemic resistance (ISR), affects tomato development and growth. We found that defense priming can promote, rather than inhibit, plant development, and that defense priming and growth trade-offs can be uncoupled. Cytokinin response was activated during induced resistance, and found to be required for the observed growth and disease resistance resulting from ISR activation. ISR was found to have a stronger effect than SAR on plant development. Our results suggest that growth promotion and induced resistance can be co-dependent, and that, in certain cases, defense priming can drive developmental processes and promote plant yield.


Assuntos
Solanum lycopersicum , Citocininas , Desenvolvimento Vegetal , Resistência Sistêmica Adquirida da Planta
2.
Plant J ; 117(2): 516-540, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864805

RESUMO

Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.


Assuntos
Citrullus , Comamonadaceae , Cucurbitaceae , Adaptação ao Hospedeiro , Doenças das Plantas/microbiologia , Citrullus/genética , Aminoácidos
3.
Plant Cell Environ ; 47(2): 629-650, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37904283

RESUMO

Plants constantly perceive and process environmental signals and balance between the energetic demands of growth and defense. Growth arrest upon pathogen attack was previously suggested to result from a redirection of the plants' metabolic resources towards the activation of plant defense. The energy sensor Target of Rapamycin (TOR) kinase is a conserved master coordinator of growth and development in all eukaryotes. Although TOR is positioned at the interface between development and defense, little is known about the mechanisms by which TOR may potentially regulate the relationship between these two modalities. The plant hormones cytokinin (CK) and gibberellin (GA) execute various aspects of plant development and defense. The ratio between CK and GA was reported to determine the outcome of developmental programmes. Here, investigating the interplay between TOR-mediated development and TOR-mediated defense in tomato, we found that TOR silencing resulted in rescue of several different aberrant developmental phenotypes, demonstrating that TOR is required for the execution of developmental cues. In parallel, TOR inhibition enhanced immunity in genotypes with a low CK/GA ratio but not in genotypes with a high CK/GA ratio. TOR-inhibition mediated disease resistance was found to depend on developmental status, and was abolished in strongly morphogenetic leaves, while being strongest in mature, differentiated leaves. CK repressed TOR activity, suggesting that CK-mediated immunity may rely on TOR downregulation. At the same time, TOR activity was promoted by GA, and TOR silencing reduced GA sensitivity, indicating that GA signalling requires normal TOR activity. Our results demonstrate that TOR likely acts in concert with CK and GA signalling, executing signalling cues in both defense and development. Thus, differential regulation of TOR or TOR-mediated processes could regulate the required outcome of development-defense prioritisation.


Assuntos
Citocininas , Giberelinas , Giberelinas/metabolismo , Citocininas/metabolismo , Sirolimo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Physiol Plant ; 176(3): e14399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894599

RESUMO

Salicylic acid (SA) is an important phytohormone, well-known for its regulatory role in shaping plant immune responses. In recent years, significant progress has been made in unravelling the molecular mechanisms underlying SA biosynthesis, perception, and downstream signalling cascades. Through the concerted efforts employing genetic, biochemical, and omics approaches, our understanding of SA-mediated defence responses has undergone remarkable expansion. In general, following SA biosynthesis through Avr effectors of the pathogens, newly synthesized SA undergoes various biochemical changes to achieve its active/inactive forms (e.g. methyl salicylate). The activated SA subsequently triggers signalling pathways associated with the perception of pathogen-derived signals, expression of defence genes, and induction of systemic acquired resistance (SAR) to tailor the intricate regulatory networks that coordinate plant immune responses. Nonetheless, the mechanistic understanding of SA-mediated plant immune regulation is currently limited because of its crosstalk with other signalling networks, which makes understanding this hormone signalling more challenging. This comprehensive review aims to provide an integrated overview of SA-mediated plant immunity, deriving current knowledge from diverse research outcomes. Through the integration of case studies, experimental evidence, and emerging trends, this review offers insights into the regulatory mechanisms governing SA-mediated immunity and signalling. Additionally, this review discusses the potential applications of SA-mediated defence strategies in crop improvement, disease management, and sustainable agricultural practices.


Assuntos
Imunidade Vegetal , Ácido Salicílico , Transdução de Sinais , Ácido Salicílico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas/imunologia , Plantas/metabolismo , Plantas/genética
5.
Chemphyschem ; 24(19): e202300117, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37464546

RESUMO

In the present work, the oxygen reduction reaction (ORR) is explored in an acidic medium with two different catalytic supports (multi-walled carbon nanotubes (MWCNTs) and nitrogen-doped multi-walled carbon nanotubes (NMWCNTs)) and two different catalysts (copper phthalocyanine (CuPc) and sulfonic acid functionalized CuPc (CuPc-SO3 - )). The composite, NMWCNTs-CuPc-SO3 - exhibits high ORR activity (assessed based on the onset potential (0.57 V vs. reversible hydrogen electrode) and Tafel slope) in comparison to the other composites. Rotating ring disc electrode (RRDE) studies demonstrate a highly selective four-electron ORR (less than 2.5 % H2 O2 formation) at the NMWCNTs-CuPc-SO3 - . The synergistic effect of the catalyst support (NMWCNTs) and sulfonic acid functionalization of the catalyst (in CuPc-SO3 - ) increase the efficiency and selectivity of the ORR at the NMWCNTs-CuPc-SO3 - . The catalyst activity of NMWCNTs-CuPc-SO3 - has been compared with many reported materials and found to be better than several catalysts. NMWCNTs-CuPc-SO3 - shows high tolerance for methanol and very small deviation in the onset potential (10 mV) between the linear sweep voltammetry responses recorded before and after 3000 cyclic voltammetry cycles, demonstrating exceptional durability. The high durability is attributed to the stabilization of CuPc-SO3 - by the additional coordination with nitrogen (Cu-Nx ) present on the surface of NMWCNTs.

6.
Phytopathology ; 113(2): 277-285, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36044638

RESUMO

The mechanisms underlying the ability of plants to differentiate between pathogens and commensals in their environment are currently unresolved. It has been suggested that spatiotemporal regulation of pattern-recognition receptor (PRR) content could be one of the components providing plants with the ability to distinguish between pathogens and nonpathogenic microbes. The LeEIX PRRs recognize xylanases derived from beneficial or commensal plant colonizers of Trichoderma species, including the xylanase known as EIX. Here, we investigated possible general roles of PRRs from the LeEIX locus in immunity and pathogen resistance in tomato. Mutating the inhibitory PRR LeEIX1, or overexpressing the activating PRR LeEIX2, resulted in resistance to a wide range of pathogens and increased basal and elicited immunity. LeEIX1 knockout caused increases in the expression level of several tested PRRs, including FLS2, as well as bacterial pathogen resistance coupled with an increase in flg22-mediated immunity. The wild tomato relative Solanum pennellii contains inactive LeEIX PRR variants. S. pennellii does not respond to elicitation with the LeEIX PRR ligand EIX. Given that EIX is derived from a mostly nonpathogenic microbe, the connection of its PRRs to disease resistance has not previously been investigated directly. Here, we observed that compared with S. lycopersicum cultivar M82, S. pennellii was more sensitive to several fungal and bacterial pathogens. Our results suggest that the LeEIX locus might determine resistance to fungal necrotrophs, whereas the resistance to biotrophs is effected in combination with a gene/quantitative trait locus not within the LeEIX locus.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Receptores de Reconhecimento de Padrão/metabolismo
7.
Phytopathology ; 112(11): 2360-2371, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35771048

RESUMO

Nutrient elements play essential roles in plant growth, development, and reproduction. Balanced nutrition is critical for plant health and the ability to withstand biotic stress. Treatment with essential elements has been shown to induce disease resistance in certain cases. Understanding the functional mechanisms underlying plant immune responses to nutritional elements has the potential to provide new insights into crop improvement. In the present study, we investigated the effect of various elements-potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na)-in promoting resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Xanthomonas euvesicatoria in tomato. We demonstrate that spray treatment of essential elements was sufficient to activate immune responses, inducing defense gene expression, cellular leakage, reactive oxygen species, and ethylene production. We report that different defense signaling pathways are required for induction of immunity in response to different elements. Our results suggest that genetic mechanisms that are modulated by nutrient elements can be exploited in agricultural practices to promote disease resistance.


Assuntos
Resistência à Doença , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Botrytis , Nutrientes
8.
Phytopathology ; 112(4): 784-793, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34636647

RESUMO

Biocontrol agents can control pathogens by reenforcing systemic plant resistance through systemic acquired resistance (SAR) or induced systemic resistance (ISR). Trichoderma spp. can activate the plant immune system through ISR, priming molecular mechanisms of defense against pathogens. Entomopathogenic fungi (EPF) can infect a wide range of arthropod pests and play an important role in reducing pests' population. Here, we investigated the mechanisms by which EPF control plant diseases. We tested two well studied EPF, Metarhizium brunneum isolate Mb7 and Beauveria bassiana as the commercial product Velifer, for their ability to induce systemic immunity and disease resistance against several fungal and bacterial phytopathogens, and their ability to promote plant growth. We compared the activity of these EPF to an established biocontrol agent, Trichoderma harzianum T39, a known inducer of systemic plant immunity and broad disease resistance. The three fungal agents were effective against several fungal and bacterial plant pathogens and arthropod pests. Our results indicate that EPF induce systemic plant immunity and disease resistance by activating the plant host defense machinery, as evidenced by increases in reactive oxygen species production and defense gene expression, and that EPF promote plant growth. EPF should be considered as control means for Tuta absoluta. We demonstrate that, with some exceptions, biocontrol in tomato can be equally potent by the tested EPF and T. harzianum T39, against both insect pests and plant pathogens. Taken together, our findings suggest that EPF may find use in broad-spectrum pest and disease management and as plant growth promoting agents.


Assuntos
Beauveria , Solanum lycopersicum , Beauveria/fisiologia , Resistência à Doença , Metarhizium , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas
9.
Oper Tech Otolayngol Head Neck Surg ; 33(2): 141-146, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35505955

RESUMO

Here, we provide an overview of olfactory dysfunction associated with COVID-19. We provide background regarding the organization and function of the peripheral olfactory system. A review of the relevant literature on anosmia and parosmia due to infection with SARS-CoV-2, the virus causing COVID-19, is provided. Specific attention is focused on possible mechanisms by which the virus may interact with and damage the cell populations of peripheral olfactory system. Evidence from human studies as well as animal models is considered. Finally, we discuss current recommendations for evaluation and management of patients with persistent post-COVID olfactory dysfunction, as well as possible future research directions.

10.
Plant Cell Environ ; 44(7): 2277-2289, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33506959

RESUMO

Plants employ systemic-induced resistance as part of their defence arsenal against pathogens. In recent years, the application of mild heating has been found to induce resistance against several pathogens. In the present study, we investigated the effect of root zone warming (RZW) in promoting tomato's resistance against the necrotrophic fungus Botrytis cinerea (Bc), the hemibiotrophic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) and the biotrophic fungus Oidium neolycopersici (On). We demonstrate that RZW enhances tomato's resistance to Bc, On and Xcv through a process that is dependent on salicylic acid and ethylene. RZW induced tomato immunity, resulting in increased defence gene expression, reactive oxygen species (ROS) and ethylene output when plants were challenged, even in the absence of pathogens. Overall, the results provide novel insights into the underlying mechanisms of warming-induced immune responses against phytopathogens with different lifestyles in tomato.


Assuntos
Doenças das Plantas/imunologia , Imunidade Vegetal/fisiologia , Folhas de Planta/microbiologia , Raízes de Plantas , Solanum lycopersicum/imunologia , Ascomicetos/patogenicidade , Botrytis/patogenicidade , Resistência à Doença/fisiologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Raízes de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Temperatura , Xanthomonas campestris/patogenicidade
11.
Physiol Mol Biol Plants ; 27(1): 165-179, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33627969

RESUMO

Plant-microbiome interactions are significant determinant for plant growth, fitness and productivity. Depending upon the specific habitat, plants' microbial communities are classified as the rhizo-, phyllo-, and endospheric regions. Understanding the plant microbiome interactions could provide an opportunity to develop strategies for sustainable agricultural practices. There is a necessity to decipher the complex structural and functional diversity within plant microbiomes to reveal its immense potential in agriculture. The plant microbiota harbors enormous microbial communities that defy analytical methodologies to study dynamics underlying plant microbiome interactions. Findings based on conventional approaches have ignored many beneficial microbial strains, which creates a serious gap in understanding the microbial communications along with the genetic adaptations, which favors their association with host plant. The new era of next generation sequencing techniques and modern cost-effective high-throughput molecular approaches can decipher microbial community composition and function. In this review, we have presented the overview of the various compartments of plants, approaches to allow the access to microbiome and factors that influence microbial community composition and function. Next, we summarize how plant microbiome interactions modulate host beneficial properties particularly nutrient acquisition and defense, along with future agricultural applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at. 10.1007/s12298-021-00927-1.

12.
Microb Pathog ; 115: 264-271, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29273511

RESUMO

The present investigation for the first time explains the anti biofilm and anti virulence potential of Kaffir lime oil (KLO) and its major constituent, Citronellal (3,7-dimethyloct-6-enal) against Xanthomonas oryzae pv. oryzae, causal organism of bacterial blight disease of rice. KLO at 500 ppm showed potential activity against X. oryzae pv. oryzae. Among the major components identified, citronellal (CIT) at 75 µM concentration was found to significantly inhibit biofilm along with the swimming and swarming potential of X. oryzae pv. oryzae. In contrary, CIT did not affect the metabolic status and growth kinetics of the bacterial cells. Gene expression analysis showed down regulation in motA, cheD, cheY, flgF, gumC, xylanase, endogluconase, cellulose, cellobiosidase, virulence and rpfF transcript levels by citronellal treatment. However, an insignificant effect of 75 µM CIT treatment was observed on motB, flgE, pilA, estY, pglA, protease and lytic genes expression. Finally, the observations recorded were in confirmity with the virulence leaf clip test as lesion length was significantly decreased (39%) in CIT treatment as compared to the control leaves inoculated with only X. oryzae pv. oryzae. Overall, the findings obtained advocate the use of CIT for promising anti biofilm and anti virulence activity which in turn can be used for managing the blight disease in rice.


Assuntos
Aldeídos/farmacologia , Biofilmes/crescimento & desenvolvimento , Citrus/química , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Oryza/microbiologia , Óleos de Plantas/farmacologia , Xanthomonas/efeitos dos fármacos , Monoterpenos Acíclicos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Movimento/efeitos dos fármacos , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Fatores de Virulência/genética , Xanthomonas/genética , Xanthomonas/patogenicidade
13.
Physiol Mol Biol Plants ; 23(2): 301-309, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28461719

RESUMO

The effect of rutin and gallic acid on growth, phytochemical and defense gene activation of rice (Oryza sativa L.) was investigated. The seeds of rice were primed with different concentrations of rutin and gallic acid (10-60 µg mL-1) to explicate the effect on germination on water agar plates. Further, to study the effect of most effective concentrations of gallic acid (60 µg mL-1) and rutin (50 µg mL-1), greenhouse pot experiment was set up to determine the changes in growth, antioxidant and defense parameters. The results revealed more pronounced effect of gallic acid on total chlorophyll and carotenoids as well as on total flavonoid content and free radical scavenging activities. Gene expression analysis of OsWRKY71, PAL, CHS and LOX genes involved in strengthening the plant defense further validated the results obtained from the biochemical analysis. Microscopic analysis also confirmed reduction in total reactive oxygen species, free radicals like H2O2 and O2- by exogenous application of gallic acid and rutin. The data obtained thus suggest that both gallic acid and rutin can affect the growth and physiology of rice plants and therefore can be used to develop effective plant growth promoters and as substitute of biofertilizers for maximizing their use in field conditions.

14.
J Sci Food Agric ; 96(12): 4151-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26762896

RESUMO

BACKGROUND: Despite the vast exploration of microbes for plant health, there is a lack of knowledge about the synergistic effects of specific microorganisms in sustainable agriculture, especially in medicinal plants such as Pelargonium graveolens L'Hér. The aim of this study was to evaluate how synergistic microbes Trichoderma harzianum ThU, Glomus intraradices and Bacillus subtilis CIM affected crop productivity, secondary metabolites and glandular trichome number in P. graveolens. RESULTS: The results demonstrated a significant (P < 0.05) increase in plant growth, secondary metabolites, total chlorophyll, carotenoids, carbohydrates, total phenolics, total flavonoids, free radical-scavenging activity and total antioxidant capacity of P. graveolens treated with synergistic bioinoculants as compared with the control. Most interestingly, an increase in essential oil by 32% in the treatment with all three microbes was observed. Furthermore, the principal aroma compounds citronellol and geraniol also increased in the same treatment. A positive and direct correlation was observed between essential oil content and number of glandular trichomes in all treatments. CONCLUSION: The present study highlights an explicit amalgamation of prospective microbes showing potential for synergism that act as biostimulants in enhancing plant production and improving the antioxidant and aroma profile of P. graveolens. © 2016 Society of Chemical Industry.


Assuntos
Antioxidantes/análise , Bacillus subtilis/fisiologia , Glomeromycota/fisiologia , Interações Microbianas , Pelargonium/microbiologia , Trichoderma/fisiologia , Tricomas/microbiologia , Agricultura/métodos , Antioxidantes/metabolismo , Biomassa , Sequestradores de Radicais Livres/análise , Óleos Voláteis/análise , Pelargonium/química , Pelargonium/metabolismo , Extratos Vegetais/análise , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Plantas Medicinais/microbiologia , Metabolismo Secundário , Tricomas/química , Tricomas/metabolismo
15.
World J Microbiol Biotechnol ; 32(10): 167, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27565777

RESUMO

Artemisia annua L. is mostly known for a bioactive metabolite, artemisinin, an effective sesquiterpene lactone used against malaria without any reputed cases of resistance. In this experiment, bioinoculants viz., Streptomyces sp. MTN14, Bacillus megaterium MTN2RP and Trichoderma harzianum Thu were applied as growth promoting substances to exploit full genetic potential of crops in terms of growth, yield, nutrient uptake and particularly artemisinin content. Further, multi-use of the bioinoculants singly and in combinations for the enhancement of antioxidant potential and therapeutic value was also undertaken which to our knowledge has never been investigated in context with microbial application. The results demonstrated that a significant (P < 0.05) increase in growth, nutrient uptake, total phenolic, flavonoid, free radical scavenging activity, ferric reducing antioxidant power, reducing power and total antioxidant capacity were observed in the A. annua treated with a combination of bioinoculants in comparison to control. Most importantly, an increase in artemisinin content and yield by 34 and 72 % respectively in the treatment having all the three microbes was observed. These results were further authenticated by the PCA analysis which showed positive correlation between plant macronutrients and antioxidant content with plant growth and artemisinin yield of A. annua. The present study thus highlights a possible new application of compatible bioinoculants for enhancing the growth along with antioxidant and therapeutic value of A. annua.


Assuntos
Antioxidantes/metabolismo , Artemisia annua/crescimento & desenvolvimento , Artemisia annua/microbiologia , Artemisininas/metabolismo , Artemisia annua/metabolismo , Bacillus megaterium/fisiologia , Biomassa , Produtos Agrícolas , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Fenóis/metabolismo , Streptomyces/fisiologia , Trichoderma/fisiologia
16.
Physiol Mol Biol Plants ; 22(2): 253-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27436916

RESUMO

In the present investigation, metabolites of Streptomyces sp. MTN14 and Trichoderma harzianum ThU significantly enhanced biomass yield (3.58 and 3.48 fold respectively) in comparison to the control plants. The secondary metabolites treatments also showed significant augmentation (0.75-2.25 fold) in withanolide A, a plant secondary metabolite. Lignin deposition, total phenolic and flavonoid content in W. somnifera were maximally induced in treatment having T. harzianum metabolites. Also, Trichoderma and Streptomyces metabolites were found much better in invoking in planta contents and antioxidants compared with their live culture treatments. Therefore, identification of new molecular effectors from metabolites of efficient microbes may be used as biopesticide and biofertilizer for commercial production of W. somnifera globally.

17.
Plant Sci ; 343: 112064, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492890

RESUMO

Auxin response factors (ARFs) are a family of transcription factors that regulate auxin-dependent developmental processes. Class A ARFs function as activators of auxin-responsive gene expression in the presence of auxin, while acting as transcriptional repressors in its absence. Despite extensive research on the functions of ARF transcription factors in plant growth and development, the extent, and mechanisms of their involvement in plant resistance, remain unknown. We have previously reported that mutations in the tomato AUXIN RESPONSE FACTOR8 (ARF8) genes SlARF8A and SlARF8B result in the decoupling of fruit development from pollination and fertilization, leading to partial or full parthenocarpy and increased yield under extreme temperatures. Here, we report that fine-tuning of SlARF8 activity results in increased resistance to fungal and bacterial pathogens. This resistance is mostly preserved under fluctuating temperatures. Thus, fine-tuning SlARF8 activity may be a potent strategy for increasing overall growth and yield.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Frutas/metabolismo
18.
Neurol Res ; 46(4): 304-317, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197610

RESUMO

Traumatic brain injury (TBI) from closed-head trauma is a leading cause of disability, with limited effective interventions. Many TBI models impact brain parenchyma directly, and are limited by the fact that these forces do not recapitulate clinically relevant closed head injury. However, applying clinically relevant injury mechanics to the intact skull may lead to variability and as a result, preclinical modeling TBI remains a challenge. Current models often do not explore sex differences in TBI, which is critically important for translation to clinical practice. We systematically investigated sources of variability in a murine model of closed-head TBI and developed a framework to reduce variability across severity and sex. We manipulated pressure, dwell time, and displacement to determine effects on motor coordination, spatial learning, and neuronal damage in 10-week-old male and female mice. Increasing pressure beyond 70 psi had a ceiling effect on cellular and behavioral outcomes, while manipulating dwell time only affected behavioral performance. Increasing displacement precisely graded injury severity in both sexes across all outcomes. Physical signs of trauma occurred more frequently at higher displacements. Stratifying severity based on day-1 rotarod performance retained histological relationships and separated both sexes into injury severity cohorts with distinct patterns of behavioral recovery. Utilizing this stratification strategy, within-group rotarod variability over 6 days post-injury was reduced by 50%. These results have important implications for translational research in TBI and provide a framework for using this clinically relevant translational injury model in both male and female mice.


Assuntos
Lesões Encefálicas Traumáticas , Camundongos , Feminino , Masculino , Animais , Modelos Animais de Doenças , Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Neurônios , Cabeça
19.
Plant Sci ; 330: 111632, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36758729

RESUMO

Plants possess an efficient, two-tiered immune system to combat pathogens and pests. Several decades of research have characterized different features of these two well-known tiers, PTI and ETI (Pattern/ Effector-triggered Immunity). NLR (Nucleotide-binding domain Leucine-rich Repeat) receptors have been found to link PTI to ETI, and be required for full potentiation of plant immune responses in several systems. Intra-cellular helper-NLRs (h-NLRs) mediate ETI and have been focused on extensively in recent research. Previously, we investigated the roles of the h-NLR SlNRC4a in tomato immunity, finding that a specific mutation in this gene results in gain of function constitutive defense activation and broad disease resistance. Deletion of the entire NRC4 clade, which contains 3 genes, can compromise tomato immunity. Here, we decided to investigate the role of an additional clade member, SlNRC4b, in basal immunity. We generated a gain of function mutant in SlNRC4b using CRISPR-Cas9, as well as a double gain of function mutant in both genes. Similarly to the slnrc4a mutant, a slnrc4b mutant also possessed increased basal immunity and broad spectrum disease resistance. The double mutant displayed additive effects in some cases, with significant increases in resistance to fungal phytopathogens as compared with each of the single mutants. Our work confirms that the NRC4 family h-NLRs are important in the plant immune system, suggesting that this gene family has the potential to be promising in targeted agricultural adaptation in the Solanaceae family, promoting disease resistance and prevention of yield loss to pathogens.


Assuntos
Resistência à Doença , Solanum lycopersicum , Resistência à Doença/genética , Solanum lycopersicum/genética , Proteínas NLR/genética , Imunidade Vegetal/genética , Plantas , Doenças das Plantas
20.
Front Plant Sci ; 14: 1196456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377809

RESUMO

Botrytis cinerea is the causative agent of gray mold disease, and infects more than 1400 plant species, including important crop plants. In tomato, B. cinerea causes severe damage in greenhouses and post-harvest storage and transport. Plant viruses of the Tobamovirus genus cause significant damage to various crop species. In recent years, the tobamovirus tomato brown rugose fruit virus (ToBRFV) has significantly affected the global tomato industry. Most studies of plant-microbe interactions focus on the interaction between the plant host and a single pathogen, however, in agricultural or natural environments, plants are routinely exposed to multiple pathogens. Here, we examined how preceding tobamovirus infection affects the response of tomato to subsequent infection by B. cinerea. We found that infection with the tobamoviruses tomato mosaic virus (ToMV) or ToBRFV resulted in increased susceptibility to B. cinerea. Analysis of the immune response of tobamovirus-infected plants revealed hyper-accumulation of endogenous salicylic acid (SA), upregulation of SA-responsive transcripts, and activation of SA-mediated immunity. Deficiency in SA biosynthesis decreased tobamovirus-mediated susceptibility to B. cinerea, while exogenous application of SA enhanced B. cinerea symptoms. These results suggest that tobamovirus-mediated accumulation of SA increases the plants' susceptibility to B. cinerea, and provide evidence for a new risk caused by tobamovirus infection in agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA