Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043944

RESUMO

Establishment of a healthy ovarian reserve is contingent upon numerous regulatory pathways during embryogenesis. Previously, mice lacking TBP-associated factor 4b (Taf4b) were shown to exhibit a diminished ovarian reserve. However, potential oocyte-intrinsic functions of TAF4b have not been examined. Here, we use a combination of gene expression profiling and chromatin mapping to characterize TAF4b-dependent gene regulatory networks in mouse oocytes. We find that Taf4b-deficient oocytes display inappropriate expression of meiotic, chromatin modification/organization, and X-linked genes. Furthermore, dysregulated genes in Taf4b-deficient oocytes exhibit an unexpected amount of overlap with dysregulated genes in oocytes from XO female mice, a mouse model of Turner Syndrome. Using Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we observed TAF4b enrichment at genes involved in chromatin remodeling and DNA repair, some of which are differentially expressed in Taf4b-deficient oocytes. Interestingly, TAF4b target genes were enriched for Sp/Klf family and NFY target motifs rather than TATA-box motifs, suggesting an alternative mode of promoter interaction. Together, our data connect several gene regulatory nodes that contribute to the precise development of the mammalian ovarian reserve.


Assuntos
Redes Reguladoras de Genes/genética , Oogênese , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Animais , Reparo do DNA , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/citologia , Oócitos/metabolismo , Regiões Promotoras Genéticas , Fatores Associados à Proteína de Ligação a TATA/deficiência , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/deficiência , Fator de Transcrição TFIID/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo
2.
PLoS Genet ; 16(1): e1008515, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914128

RESUMO

Germ cells undergo many developmental transitions before ultimately becoming either eggs or sperm, and during embryonic development these transitions include epigenetic reprogramming, quiescence, and meiosis. To begin understanding the transcriptional regulation underlying these complex processes, we examined the spatial and temporal expression of TAF4b, a variant TFIID subunit required for fertility, during embryonic germ cell development. By analyzing published datasets and using our own experimental system to validate these expression studies, we determined that both Taf4b mRNA and protein are highly germ cell-enriched and that Taf4b mRNA levels dramatically increase from embryonic day 12.5-18.5. Surprisingly, additional mRNAs encoding other TFIID subunits are coordinately upregulated through this time course, including Taf7l and Taf9b. The expression of several of these germ cell-enriched TFIID genes is dependent upon Dazl and/or Stra8, known regulators of germ cell development and meiosis. Together, these data suggest that germ cells employ a highly specialized and dynamic form of TFIID to drive the transcriptional programs that underlie mammalian germ cell development.


Assuntos
Gametogênese , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína 1 Suprimida em Azoospermia/genética , Proteína 1 Suprimida em Azoospermia/metabolismo , Células Germinativas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo
3.
Biol Reprod ; 107(2): 500-513, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35512140

RESUMO

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a de-ubiquitinating enzyme enriched in neuronal and gonadal tissues known to regulate the cellular stores of mono-ubiquitin and protein turnover. While its function in maintaining proper motor neuron function is well established, investigation into its role in the health and function of reproductive processes is only just beginning to be studied. Single-cell-sequencing analysis of all ovarian cells from the murine perinatal period revealed that Uchl1 is very highly expressed in the developing oocyte population, an observation which was corroborated by high levels of oocyte-enriched UCHL1 protein expression in oocytes of all stages throughout the mouse reproductive lifespan. To better understand the role UCHL1 may be playing in oocytes, we utilized a UCHL1-deficient mouse line, finding reduced number of litters, reduced litter sizes, altered folliculogenesis, morphologically abnormal oocytes, disrupted estrous cyclicity and apparent endocrine dysfunction in these animals compared to their wild-type and heterozygous littermates. These data reveal a novel role of UCHL1 in female fertility as well as overall ovarian function, and suggest a potentially essential role for the ubiquitin proteasome pathway in mediating reproductive health.


Assuntos
Ubiquitina Tiolesterase , Ubiquitina , Animais , Feminino , Fertilidade/genética , Camundongos , Oócitos/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
4.
Front Cell Dev Biol ; 11: 1270408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900284

RESUMO

Prospermatogonia (ProSpg) link the embryonic development of male primordial germ cells to the healthy establishment of postnatal spermatogonia and spermatogonial stem cells. While these spermatogenic precursor cells undergo the characteristic transitions of cycling and quiescence, the transcriptional events underlying these developmental hallmarks remain unknown. Here, we investigated the expression and function of TBP-associated factor 4b (Taf4b) in the timely development of quiescent mouse ProSpg using an integration of gene expression profiling and chromatin mapping. We find that Taf4b mRNA expression is elevated during the transition of mitotic-to-quiescent ProSpg and Taf4b-deficient ProSpg are delayed in their entry into quiescence. Gene ontology, protein network analysis, and chromatin mapping demonstrate that TAF4b is a direct and indirect regulator of chromatin and cell cycle-related gene expression programs during ProSpg quiescence. Further validation of these cell cycle mRNA changes due to the loss of TAF4b was accomplished via immunostaining for proliferating cell nuclear antigen (PCNA). Together, these data indicate that TAF4b is a key transcriptional regulator of the chromatin and quiescent state of the developing mammalian spermatogenic precursor lineage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA