Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Nutr ; : 1-9, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654680

RESUMO

Prebiotic fibre represents a promising and efficacious treatment to manage pre-diabetes, acting via complementary pathways involving the gut microbiome and viscosity-related properties. In this study, we evaluated the effect of using a diverse prebiotic fibre supplement on glycaemic, lipid and inflammatory biomarkers in patients with pre-diabetes. Sixty-six patients diagnosed with pre-diabetes (yet not receiving glucose-lowering medications) were randomised into treatment (thirty-three) and placebo (thirty-three) interventions. Participants in the treatment arm consumed 20 g/d of a diverse prebiotic fibre supplement, and participants in the placebo arm consumed 2 g/d of cellulose for 24 weeks. A total of fifty-one and forty-eight participants completed the week 16 and week 24 visits, respectively. The intervention was well tolerated, with a high average adherence rate across groups. Our results extend upon previous work, showing a significant change in glycated haemoglobin (HbA1c) in the treatment group but only in participants with lower baseline HbA1c levels (< 6 % HbA1c) (P = 0·05; treatment -0·17 ± 0·27 v. placebo 0·07 ± 0·29, mean ± sd). Within the whole cohort, we showed significant improvements in insulin sensitivity (P = 0·03; treatment 1·62 ± 5·79 v. placebo -0·77 ± 2·11) and C-reactive protein (P FWE = 0·03; treatment -2·02 ± 6·42 v. placebo 0·94 ± 2·28) in the treatment group compared with the placebo. Together, our results support the use of a diverse prebiotic fibre supplement for physiologically relevant biomarkers in pre-diabetes.

2.
Hepatology ; 66(6): 1727-1738, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28586116

RESUMO

Recurrent hepatic encephalopathy (HE) is a leading cause of readmission despite standard of care (SOC) associated with microbial dysbiosis. Fecal microbiota transplantation (FMT) may improve dysbiosis; however, it has not been studied in HE. We aimed to define whether FMT using a rationally derived stool donor is safe in recurrent HE compared to SOC alone. An open-label, randomized clinical trial with a 5-month follow-up in outpatient men with cirrhosis with recurrent HE on SOC was conducted with 1:1 randomization. FMT-randomized patients received 5 days of broad-spectrum antibiotic pretreatment, then a single FMT enema from the same donor with the optimal microbiota deficient in HE. Follow-up occurred on days 5, 6, 12, 35, and 150 postrandomization. The primary outcome was safety of FMT compared to SOC using FMT-related serious adverse events (SAEs). Secondary outcomes were adverse events, cognition, microbiota, and metabolomic changes. Participants in both arms were similar on all baseline criteria and were followed until study end. FMT with antibiotic pretreatment was well tolerated. Eight (80%) SOC participants had a total of 11 SAEs compared to 2 (20%) FMT participants with SAEs (both FMT unrelated; P = 0.02). Five SOC and no FMT participants developed further HE (P = 0.03). Cognition improved in the FMT, but not the SOC, group. Model for End-Stage Liver Disease (MELD) score transiently worsened postantibiotics, but reverted to baseline post-FMT. Postantibiotics, beneficial taxa, and microbial diversity reduction occurred with Proteobacteria expansion. However, FMT increased diversity and beneficial taxa. SOC microbiota and MELD score remained similar throughout. CONCLUSION: FMT from a rationally selected donor reduced hospitalizations, improved cognition, and dysbiosis in cirrhosis with recurrent HE. (Hepatology 2017;66:1727-1738).


Assuntos
Transplante de Microbiota Fecal , Encefalopatia Hepática/terapia , Idoso , Cognição , Feminino , Humanos , Masculino , Metaboloma , Microbiota , Pessoa de Meia-Idade , Resultado do Tratamento
3.
Bioinformatics ; 32(16): 2545-7, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153636

RESUMO

UNLABELLED: Intrinsically disordered proteins (IDPs) play central roles in many biological processes. Consequently, an accurate description of the disordered state is an important step towards a comprehensive understanding of a number of important biological functions. In this work we describe a new web server, Mollack, for the automated construction of unfolded ensembles that uses both experimental and molecular simulation data to construct models for the unfolded state. An important aspect of the method is that it calculates a quantitative estimate of the uncertainty in the constructed ensemble, thereby providing an objective measure of the quality of the final model. Overall, Mollack facilitates structure-function studies of disordered proteins. AVAILABILITY AND IMPLEMENTATION: http://cmstultz-mollack.mit.edu CONTACT: cmstultz@mit.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Computadores , Proteínas Intrinsicamente Desordenadas , Internet , Conformação Proteica
4.
Biochemistry ; 53(44): 6981-91, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25330398

RESUMO

Amyloid-ß is an intrinsically disordered protein that forms fibrils in the brains of patients with Alzheimer's disease. To explore factors that affect the process of fibril growth, we computed the free energy associated with disordered amyloid-ß monomers being added to growing amyloid fibrils using extensive molecular dynamics simulations coupled with umbrella sampling. We find that the mechanisms of Aß40 and Aß42 fibril elongation have many features in common, including the formation of an obligate on-pathway ß-hairpin intermediate that hydrogen bonds to the fibril core. In addition, our data lead to new hypotheses for how fibrils may serve as secondary nucleation sites that can catalyze the formation of soluble oligomers, a finding in agreement with recent experimental observations. These data provide a detailed mechanistic description of amyloid-ß fibril elongation and a structural link between the disordered free monomer and the growth of amyloid fibrils and soluble oligomers.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Termodinâmica
5.
Nat Microbiol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914826

RESUMO

Microbially derived short-chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. Here we use a microbial community-scale metabolic modelling (MCMM) approach to predict individual-specific SCFA production profiles to assess the impact of different dietary, prebiotic and probiotic inputs. We evaluate the quantitative accuracy of our MCMMs using in vitro and ex vivo data, plus published human cohort data. We find that MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic and probiotic interventions aimed at optimizing SCFA production in the gut. Our model represents an approach to direct gut microbiome engineering for precision health and nutrition.

6.
J Am Chem Soc ; 135(10): 3865-72, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23398399

RESUMO

α-Synuclein, a protein that forms ordered aggregates in the brains of patients with Parkinson's disease, is intrinsically disordered in the monomeric state. Several studies, however, suggest that it can form soluble multimers in vivo that have significant secondary structure content. A number of studies demonstrate that α-synuclein can form ß-strand-rich oligomers that are neurotoxic, and recent observations argue for the existence of soluble helical tetrameric species in cellulo that do not form toxic aggregates. To gain further insight into the different types of multimeric states that this protein can adopt, we generated an ensemble for an α-synuclein construct that contains a 10-residue N-terminal extension, which forms multimers when isolated from Escherichia coli. Data from NMR chemical shifts and residual dipolar couplings were used to guide the construction of the ensemble. Our data suggest that the dominant state of this ensemble is a disordered monomer, complemented by a small fraction of helical trimers and tetramers. Interestingly, the ensemble also contains trimeric and tetrameric oligomers that are rich in ß-strand content. These data help to reconcile seemingly contradictory observations that indicate the presence of a helical tetramer in cellulo on the one hand, and a disordered monomer on the other. Furthermore, our findings are consistent with the notion that the helical tetrameric state provides a mechanism for storing α-synuclein when the protein concentration is high, thereby preventing non-membrane-bound monomers from aggregating.


Assuntos
Termodinâmica , alfa-Sinucleína/química , Dimerização , Escherichia coli/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
8.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909644

RESUMO

Microbially-derived short chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation, and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. We present a microbial community-scale metabolic modeling (MCMM) approach to predict individual-specific SCFA production profiles. We assess the quantitative accuracy of our MCMMs using in vitro, ex vivo, and in vivo data. Next, we show how MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic, and probiotic interventions that optimize SCFA production in the gut. Our results represent an important advance in engineering gut microbiome functional outputs for precision health and nutrition.

9.
Adv Nutr ; 13(5): 1450-1461, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-35776947

RESUMO

Humans often show variable responses to dietary, prebiotic, and probiotic interventions. Emerging evidence indicates that the gut microbiota is a key determinant for this population heterogeneity. Here, we provide an overview of some of the major computational and experimental tools being applied to critical questions of microbiota-mediated personalized nutrition and health. First, we discuss the latest advances in in silico modeling of the microbiota-nutrition-health axis, including the application of statistical, mechanistic, and hybrid artificial intelligence models. Second, we address high-throughput in vitro techniques for assessing interindividual heterogeneity, from ex vivo batch culturing of stool and continuous culturing in anaerobic bioreactors, to more sophisticated organ-on-a-chip models that integrate both host and microbial compartments. Third, we explore in vivo approaches for better understanding of personalized, microbiota-mediated responses to diet, prebiotics, and probiotics, from nonhuman animal models and human observational studies, to human feeding trials and crossover interventions. We highlight examples of existing, consumer-facing precision nutrition platforms that are currently leveraging the gut microbiota. Furthermore, we discuss how the integration of a broader set of the tools and techniques described in this piece can generate the data necessary to support a greater diversity of precision nutrition strategies. Finally, we present a vision of a precision nutrition and healthcare future, which leverages the gut microbiota to design effective, individual-specific interventions.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Inteligência Artificial , Dieta , Humanos , Prebióticos
10.
PLoS One ; 16(7): e0254004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34288919

RESUMO

The human gut microbiota is known for its highly heterogeneous composition across different individuals. However, relatively little is known about functional differences in its ability to ferment complex polysaccharides. Through ex vivo measurements from healthy human donors, we show that individuals vary markedly in their microbial metabolic phenotypes (MMPs), mirroring differences in their microbiota composition, and resulting in the production of different quantities and proportions of Short Chain Fatty Acids (SCFAs) from the same inputs. We also show that aspects of these MMPs can be predicted from composition using 16S rRNA sequencing. From experiments performed using the same dietary fibers in vivo, we demonstrate that an ingested bolus of fiber is almost entirely consumed by the microbiota upon passage. We leverage our ex vivo data to construct a model of SCFA production and absorption in vivo, and argue that inter-individual differences in quantities of absorbed SCFA are directly related to differences in production. Though in vivo studies are required to confirm these data in the context of the gut, in addition to in vivo read outs of SCFAs produced in response to specific fiber spike-ins, these data suggest that optimizing SCFA production in a given individual through targeted fiber supplementation requires quantitative understanding of their MMP.


Assuntos
Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/biossíntese , Fermentação , Microbioma Gastrointestinal/fisiologia , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Variação Biológica Individual , Carboidratos da Dieta/metabolismo , Fezes/microbiologia , Feminino , Seguimentos , Humanos , Absorção Intestinal , Inulina/análise , Aprendizado de Máquina , Masculino , Fenótipo , Polissacarídeos/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ribotipagem , Adulto Jovem
11.
Biophys J ; 98(11): 2634-43, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20513408

RESUMO

Studies on collagen and collagen-like peptides suggest that triple-helical stability can vary along the amino acid chain. In this regard, it has been shown that lysine residues in the Y position and acidic residues in the X' position of (GPO)(3)GXYGX'Y'(GPO)(3) peptides lead to triple-helical structures with melting temperatures similar to (GPO)(8) (where O is hydroxyproline), which is generally regarded as the most stable collagen-like sequence of this length. This enhanced stability has been attributed to the formation of salt bridges between adjacent collagen chains. In this study, we explore the relationship between interchain salt bridge formation and triple-helical stability using detailed molecular simulations. Although our results confirm that salt bridges promote triple-helical stability, we find that not all salt bridges are created equal. In particular, lysine-glutamate salt bridges are most stabilizing when formed between residues in the middle strand (B) and the trailing strand (C), whereas lysine-aspartate salt bridges are most stabilizing when formed between residues in the leading (A) and middle (B) strand-the latter observation being consistent with recent NMR data on a heterotrimeric model peptide. Overall, we believe these data clarify the role of salt bridges in modulating triple-helical stability and can be used to guide the design of collagen-like peptides that have specific interchain interactions.


Assuntos
Colágeno/química , Simulação de Dinâmica Molecular , Ácido Aspártico/química , Colágeno/genética , Ácido Glutâmico/química , Lisina/química , Peptídeos/química , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Termodinâmica , Fatores de Tempo
12.
J Pharm Biomed Anal ; 189: 113469, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32688211

RESUMO

One of the crucial roles played in the context of human physiology by the human gut microbiota is to ferment resistant polysaccharides and dietary fibres in the colon. Even though it has long been presumed that these processes play fundamental roles in regulating human health, we remain unable to treat or even diagnose deficiencies in microbial fermentation. In part, this relatively slow progress can be attributed to the fact that studying the gut microbiota and its metabolic properties has until now heavily relied on next generation sequencing and case-control cohorts to identify differentially abundant genes, pathways or organisms in the context of a particular clinical indication. Unfortunately, these methods and studies do not allow us to rigorously probe the functional and metabolic phenotype of a microbiota, or for elucidating its mechanisms of action on the host. To improve our clinical control over these fermentation processes, it is critical that we improve our quantitative, mechanistic understanding of their impact on host physiology. In this review, we provide an overview of our current understanding of the roles microbial fermentation processes play in human health in the context of disease prevention. We then describe the evidence linking these processes with depression and anxiety-related conditions, and use these complex disorders as a framework for illustrating the fact that achieving a clinical vision that exploits microbial fermentation towards human health will depend on thoughtful multi-disciplinary collaboration between clinical research, systems biology, and the pharmaceutical and analytical sciences.


Assuntos
Microbioma Gastrointestinal , Microbiota , Estudos de Casos e Controles , Colo , Fermentação , Humanos
13.
mBio ; 11(5)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900799

RESUMO

Prebiotics confer benefits to human health, often by promoting the growth of gut bacteria that produce metabolites valuable to the human body, such as short-chain fatty acids (SCFAs). While prebiotic selection has strongly focused on maximizing the production of SCFAs, less attention has been paid to gases, a by-product of SCFA production that also has physiological effects on the human body. Here, we investigate how the content and volume of gas production by human gut microbiota are affected by the chemical composition of the prebiotic and the community composition of the microbiota. We first constructed a linear system model based on mass and electron balance and compared the theoretical product ranges of two prebiotics, inulin and pectin. Modeling shows that pectin is more restricted in product space, with less potential for H2 but more potential for CO2 production. An ex vivo experimental system showed pectin degradation produced significantly less H2 than inulin, but CO2 production fell outside the theoretical product range, suggesting fermentation of fecal debris. Microbial community composition also impacted results: methane production was dependent on the presence of Methanobacteria, while interindividual differences in H2 production during inulin degradation were driven by a Lachnospiraceae taxon. Overall, these results suggest that both the chemistry of the prebiotic and the composition of the microbiota are relevant to gas production. Metabolic processes that are relatively prevalent in the microbiome, such as H2 production, will depend more on substrate, while rare metabolisms such as methanogenesis depend more strongly on microbiome composition.IMPORTANCE Prebiotic fermentation in the gut often leads to the coproduction of short-chain fatty acids (SCFAs) and gases. While excess gas production can be a potential problem for those with functional gut disorders, gas production is rarely considered during prebiotic design. In this study, we combined the use of theoretical models and an ex vivo experimental platform to illustrate that both the chemical composition of the prebiotic and the community composition of the human gut microbiota can affect the volume and content of gas production during prebiotic fermentation. Specifically, more prevalent metabolic processes such as hydrogen production were strongly affected by the oxidation state of the probiotic, while rare metabolisms such as methane production were less affected by the chemical nature of the substrate and entirely dependent on the presence of Methanobacteria in the microbiota.


Assuntos
Fibras na Dieta/metabolismo , Fermentação , Microbioma Gastrointestinal/fisiologia , Intestinos/fisiologia , Prebióticos/análise , Adulto , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Gases , Voluntários Saudáveis , Humanos , Hidrogênio/metabolismo , Masculino , Metano/biossíntese , Modelos Teóricos
14.
Front Microbiol ; 11: 1262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636817

RESUMO

Amplicon high-throughput sequencing of 16S ribosomal RNA (rRNA) gene is currently the most widely used technique to investigate complex gut microbial communities. Microbial identification might be influenced by several factors, including the choice of bioinformatic pipelines, making comparisons across studies difficult. Here, we compared four commonly used pipelines (QIIME2, Bioconductor, UPARSE and mothur) run on two operating systems (OS) (Linux and Mac), to evaluate the impact of bioinformatic pipeline and OS on the taxonomic classification of 40 human stool samples. We applied the SILVA 132 reference database for all the pipelines. We compared phyla and genera identification and relative abundances across the four pipelines using the Friedman rank sum test. QIIME2 and Bioconductor provided identical outputs on Linux and Mac OS, while UPARSE and mothur reported only minimal differences between OS. Taxa assignments were consistent at both phylum and genus level across all the pipelines. However, a difference in terms of relative abundance was identified for all phyla (p < 0.013) and for the majority of the most abundant genera (p < 0.028), such as Bacteroides (QIIME2: 24.5%, Bioconductor: 24.6%, UPARSE-linux: 23.6%, UPARSE-mac: 20.6%, mothur-linux: 22.2%, mothur-mac: 21.6%, p < 0.001). The use of different bioinformatic pipelines affects the estimation of the relative abundance of gut microbial community, indicating that studies using different pipelines cannot be directly compared. A harmonization procedure is needed to move the field forward.

15.
Nat Microbiol ; 4(6): 964-971, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30911128

RESUMO

The human microbiome, described as an accessory organ because of the crucial functions it provides, is composed of species that are uniquely found in humans1,2. Yet, surprisingly little is known about the impact of routine interpersonal contacts in shaping microbiome composition. In a relatively 'closed' cohort of 287 people from the Fiji Islands, where common barriers to bacterial transmission are absent, we examine putative bacterial transmission in individuals' gut and oral microbiomes using strain-level data from both core single-nucleotide polymorphisms and flexible genomic regions. We find a weak signal of transmission, defined by the inferred sharing of genotypes, across many organisms that, in aggregate, reveals strong transmission patterns, most notably within households and between spouses. We were unable to determine the directionality of transmission nor whether it was direct. We further find that women harbour strains more closely related to those harboured by their familial and social contacts than men, and that transmission patterns of oral-associated and gut-associated microbiota need not be the same. Using strain-level data alone, we are able to confidently predict a subset of spouses, highlighting the role of shared susceptibilities, behaviours or social interactions that distinguish specific links in the social network.


Assuntos
Família , Microbiota , Rede Social , Bactérias/genética , Feminino , Fiji , Microbioma Gastrointestinal/genética , Genômica , Genótipo , Especificidade de Hospedeiro , Humanos , Sequências Repetitivas Dispersas , Masculino , Microbiota/genética , Polimorfismo de Nucleotídeo Único
16.
Chem Sci ; 10(14): 4004-4014, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31015941

RESUMO

Engineering functional amyloids through a modular genetic strategy represents new opportunities for creating multifunctional molecular materials with tailored structures and performance. Despite important advances, how fusion modules affect the self-assembly and functional properties of amyloids remains elusive. Here, using Escherichia coli curli as a model system, we systematically studied the effect of flanking domains on the structures, assembly kinetics and functions of amyloids. The designed amyloids were composed of E. coli biofilm protein CsgA (as amyloidogenic cores) and one or two flanking domains, consisting of chitin-binding domains (CBDs) from Bacillus circulans chitinase, and/or mussel foot proteins (Mfps). Incorporation of fusion domains did not disrupt the typical ß-sheet structures, but indeed affected assembly rate, morphology, and stiffness of resultant fibrils. Consequently, the CsgA-fusion fibrils, particularly those containing three domains, were much shorter than the CsgA-only fibrils. Furthermore, the stiffness of the resultant fibrils was heavily affected by the structural feature of fusion domains, with ß-sheet-containing domains tending to increase the Young's modulus while random coil domains decreasing the Young's modulus. In addition, fibrils containing CBD domains showed higher chitin-binding activity compared to their CBD-free counterparts. The CBD-CsgA-Mfp3 construct exhibited significantly lower binding activity than Mfp5-CsgA-CBD due to inappropriate folding of the CBD domain in the former construct, in agreement with results based upon molecular dynamics modeling. Our study provides new insights into the assembly and functional properties of designer amyloid proteins with increasing complex domain structures and lays the foundation for the future design of functional amyloid-based structures and molecular materials.

17.
Gut Microbes ; 10(3): 358-366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30373468

RESUMO

Several gastrointestinal diseases show a sex imbalance, although the underlying (patho)physiological mechanisms behind this are not well understood. The gut microbiome may be involved in this process, forming a complex interaction with host immune system, sex hormones, medication and other environmental factors. Here we performed sex-specific analyses of fecal microbiota composition in 1135 individuals from a population-based cohort. The overall gut microbiome composition of females and males was significantly different (p = 0.001), with females showing a greater microbial diversity (p = 0.009). After correcting for the effects of intrinsic factors, smoking, diet and medications, female hormonal factors such as the use of oral contraceptives and undergoing an ovariectomy were associated with microbial species and pathways. Females had a higher richness of antibiotic-resistance genes, with the most notable being resistance to the lincosamide nucleotidyltransferase (LNU) gene family. The higher abundance of resistance genes is consistent with the greater prescription of the Macrolide-Lincosamide-Streptogramin classes of antibiotics to females. Furthermore, we observed an increased resistance to aminoglycosides in females with self-reported irritable bowel syndrome. These results throw light upon the effects of common medications that are differentially prescribed between sexes and highlight the importance of sex-specific analysis when studying the gut microbiome and resistome.


Assuntos
Antibacterianos/farmacologia , Biodiversidade , Resistência Microbiana a Medicamentos/genética , Microbioma Gastrointestinal/genética , Metagenoma/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fezes/microbiologia , Feminino , Genes Bacterianos/genética , Humanos , Síndrome do Intestino Irritável/microbiologia , Lincosamidas/farmacologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores Sexuais , Adulto Jovem
18.
Stat Methods Med Res ; 27(10): 2906-2917, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28178876

RESUMO

Fecal microbiota transplantation is a highly effective intervention for patients suffering from recurrent Clostridium difficile, a common hospital-acquired infection. Fecal microbiota transplantation's success as a therapy for C. difficile has inspired interest in performing clinical trials that experiment with fecal microbiota transplantation as a therapy for other conditions like inflammatory bowel disease, obesity, diabetes, and Parkinson's disease. Results from clinical trials that use fecal microbiota transplantation to treat inflammatory bowel disease suggest that, for at least one condition beyond C. difficile, most fecal microbiota transplantation donors produce stool that is not efficacious. The optimal strategies for identifying and using efficacious donors have not been investigated. We therefore examined the optimal Bayesian response-adaptive strategy for allocating patients to donors and formulated a computationally tractable myopic heuristic. This heuristic computes the probability that a donor is efficacious by updating prior expectations about the efficacy of fecal microbiota transplantation, the placebo rate, and the fraction of donors that produce efficacious stool. In simulations designed to mimic a recent fecal microbiota transplantation clinical trial, for which traditional power calculations predict [Formula: see text] statistical power, we found that accounting for differences in donor stool efficacy reduced the predicted statistical power to [Formula: see text]. For these simulations, using the heuristic Bayesian allocation strategy more than quadrupled the statistical power to [Formula: see text]. We use the results of similar simulations to make recommendations about the number of patients, the number of donors, and the choice of clinical endpoint that clinical trials should use to optimize their ability to detect if fecal microbiota transplantation is effective for treating a condition.


Assuntos
Infecções por Clostridium/cirurgia , Transplante de Microbiota Fecal , Projetos de Pesquisa , Teorema de Bayes , Clostridioides difficile/isolamento & purificação , Humanos , Resultado do Tratamento
19.
Sci Rep ; 8(1): 12699, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139999

RESUMO

Dietary interventions to manipulate the human gut microbiome for improved health have received increasing attention. However, their design has been limited by a lack of understanding of the quantitative impact of diet on a host's microbiota. We present a highly controlled diet perturbation experiment in a healthy, human cohort in which individual micronutrients are spiked in against a standardized background. We identify strong and predictable responses of specific microbes across participants consuming prebiotic spike-ins, at the level of both strains and functional genes, suggesting fine-scale resource partitioning in the human gut. No predictable responses to non-prebiotic micronutrients were found. Surprisingly, we did not observe decreases in day-to-day variability of the microbiota compared to a complex, varying diet, and instead found evidence of diet-induced stress and an associated loss of biodiversity. Our data offer insights into the effect of a low complexity diet on the gut microbiome, and suggest that effective personalized dietary interventions will rely on functional, strain-level characterization of a patient's microbiota.


Assuntos
Suplementos Nutricionais , Prebióticos , Adulto , Microbioma Gastrointestinal/fisiologia , Humanos , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
20.
ISME J ; 12(10): 2403-2416, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29899513

RESUMO

Endospore-formers in the human microbiota are well adapted for host-to-host transmission, and an emerging consensus points to their role in determining health and disease states in the gut. The human gut, more than any other environment, encourages the maintenance of endospore formation, with recent culture-based work suggesting that over 50% of genera in the microbiome carry genes attributed to this trait. However, there has been limited work on the ecological role of endospores and other stress-resistant cellular states in the human gut. In fact, there is no data to indicate whether organisms with the genetic potential to form endospores actually form endospores in situ and how sporulation varies across individuals and over time. Here we applied a culture-independent protocol to enrich for endospores and other stress-resistant cells in human feces to identify variation in these states across people and within an individual over time. We see that cells with resistant states are more likely than those without to be shared among multiple individuals, which suggests that these resistant states are particularly adapted for cross-host dissemination. Furthermore, we use untargeted fecal metabolomics in 24 individuals and within a person over time to show that these organisms respond to shared environmental signals, and in particular, dietary fatty acids, that likely mediate colonization of recently disturbed human guts.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/fisiologia , Bactérias/genética , Biodiversidade , Fezes/microbiologia , Humanos , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA