Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 351(1): 120-7, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21211521

RESUMO

Zic genes encode a conserved family of zinc finger proteins with essential functions in neural development and axial skeletal patterning in the vertebrate embryo. Zic proteins also function as Gli co-factors in Hedgehog signaling. Here, we report that Zic genes have a role in Myf5 regulation for epaxial somite myogenesis in the mouse embryo. In situ hybridization studies show that Zic1, 2, and 3 transcripts are expressed in Myf5-expressing epaxial myogenic progenitors in the dorsal medial dermomyotome of newly forming somites, and immunohistological studies show that Zic2 protein is co-localized with Myf5 and Pax3 in the dorsal medial lip of the dermomyotome, but is not expressed in the forming myotome. In functional reporter assays, Zic1 and Zic2, but not Zic3, potentiate the transactivation of Gli-dependent Myf5 epaxial somite-specific (ES) enhancer activity in 3T3 cells, and Zic1 activates endogenous Myf5 expression in 10T1/2 cells and in presomitic mesoderm explants. Zic2 also co-immunoprecipitates with Gli2, indicating that Zic2 forms complexes with Gli2 to promote Myf5 expression. Genetic studies show that, although Zic2 and Zic1 are activated normally in sonic hedgehog(-/-) mutant embryos, Myf5 expression in newly forming somites is deficient in both sonic hedgehog(-/-) and in Zic2(kd/kd) mutant mouse embryos, providing further evidence that these Zic genes are upstream regulators of Hedgehog-mediated Myf5 activation. Myf5 activation in newly forming somites is delayed in Zic2 mutant embryos until the time of Zic1 activation, and both Zic2 and Myf5 require noggin for their activation.


Assuntos
Desenvolvimento Muscular , Fator Regulador Miogênico 5/genética , Somitos/embriologia , Fatores de Transcrição/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/fisiologia , Camundongos , Proteína MyoD/genética , Células NIH 3T3
2.
Annu Rev Cell Dev Biol ; 18: 747-83, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12142270

RESUMO

Embryological and genetic studies of mouse, bird, zebrafish, and frog embryos are providing new insights into the regulatory functions of the myogenic regulatory factors, MyoD, Myf5, Myogenin, and MRF4, and the transcriptional and signaling mechanisms that control their expression during the specification and differentiation of muscle progenitors. Myf5 and MyoD genes have genetically redundant, but developmentally distinct regulatory functions in the specification and the differentiation of somite and head muscle progenitor lineages. Myogenin and MRF4 have later functions in muscle differentiation, and Pax and Hox genes coordinate the migration and specification of somite progenitors at sites of hypaxial and limb muscle formation in the embryo body. Transcription enhancers that control Myf5 and MyoD activation in muscle progenitors and maintain their expression during muscle differentiation have been identified by transgenic analysis. In epaxial, hypaxial, limb, and head muscle progenitors, Myf5 is controlled by lineage-specific transcription enhancers, providing evidence that multiple mechanisms control progenitor specification at different sites of myogenesis in the embryo. Developmental signaling ligands and their signal transduction effectors function both interactively and independently to control Myf5 and MyoD activation in muscle progenitor lineages, likely through direct regulation of their transcription enhancers. Future investigations of the signaling and transcriptional mechanisms that control Myf5 and MyoD in the muscle progenitor lineages of different vertebrate embryos can be expected to provide a detailed understanding of the developmental and evolutionary mechanisms for anatomical muscles formation in vertebrates. This knowledge will be a foundation for development of stem cell therapies to repair diseased and damaged muscles.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA , Embrião de Mamíferos/embriologia , Embrião não Mamífero , Genes Reguladores/genética , Músculo Esquelético/embriologia , Células-Tronco/metabolismo , Transativadores , Vertebrados/embriologia , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5 , Células-Tronco/citologia , Vertebrados/metabolismo
3.
Genes Dev ; 16(1): 114-26, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11782449

RESUMO

Sonic hedgehog (Shh) is a secreted signaling molecule for tissue patterning and stem cell specification in vertebrate embryos. Shh mediates both long-range and short-range signaling responses in embryonic tissues through the activation and repression of target genes by its Gli transcription factor effectors. Despite the well-established functions of Shh signaling in development and human disease, developmental target genes of Gli regulation are virtually unknown. In this study, we investigate the role of Shh signaling in the control of Myf5, a skeletal muscle regulatory gene for specification of muscle stem cells in vertebrate embryos. In previous genetic studies, we showed that Shh is required for Myf5 expression in the specification of dorsal somite, epaxial muscle progenitors. However, these studies did not distinguish whether Myf5 is a direct target of Gli regulation through long-range Shh signaling, or alternatively, whether Myf5 regulation is a secondary response to Shh signaling. To address this question, we have used transgenic analysis with lacZ reporter genes to characterize an Myf5 transcription enhancer that controls the activation of Myf5 expression in the somite epaxial muscle progenitors in mouse embryos. This Myf5 epaxial somite (ES) enhancer is Shh-dependent, as shown by its complete inactivity in somites of homozygous Shh mutant embryos, and by its reduced activity in heterozygous Shh mutant embryos. Furthermore, Shh and downstream Shh signal transducers specifically induce ES enhancer/luciferase reporters in Shh-responsive 3T3 cells. A Gli-binding site located within the ES enhancer is required for enhancer activation by Shh signaling in transfected 3T3 cells and in epaxial somite progenitors in transgenic embryos. These findings establish that Myf5 is a direct target of long-range Shh signaling through positive regulation by Gli transcription factors, providing evidence that Shh signaling has a direct inductive function in cell lineage specification.


Assuntos
Proteínas de Ligação a DNA , Desenvolvimento Muscular/genética , Proteínas Musculares/genética , Músculo Esquelético/fisiologia , Proteínas Oncogênicas/genética , Transativadores/genética , Fatores de Transcrição/genética , Células 3T3 , Animais , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/embriologia , Fator Regulador Miogênico 5 , Transdução de Sinais , Células-Tronco/fisiologia , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA