Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Arch Biochem Biophys ; 564: 254-61, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25447819

RESUMO

Synthetic peptides with sequences derived from the cellular prion protein (PrP(C)) unprocessed N-terminus are able to counteract the propagation of proteinase K resistant prions (PrP(Res), indicating the presence of the prion isoform of the prion protein) in cell cultures (Löfgren et al., 2008). The anti-prion peptides have characteristics like cell penetrating peptides (CPPs) and consist of the prion protein hydrophobic signal sequence followed by a polycationic motif (residues KKRPKP), in mouse PrP(C) corresponding to residues 1-28. Here we analyze the sequence elements required for the anti-prion effect of KKRPKP-conjugates. Neuronal GT1-1 cells were infected with either prion strain RML or 22L. Variable peptide constructs originating from the mPrP1-28 sequence were analyzed for anti-prion effects, measured as disappearance of proteinase K resistant prions (PrP(Res)) in the infected cell cultures. We find that even a 5 amino acid N-terminal shortening of the signal peptide abolishes the anti-prion effect. We show that the signal peptide from PrP(C) can be replaced with the signal peptide from the Neural cell adhesion molecule-1; NCAM11-19, with a retained capacity to reduce PrP(Res) levels. The anti-prion effect is lost if the polycationic N-terminal PrP(C)-motif is conjugated to any conventional CPP, such as TAT48-60, transportan-10 or penetratin. We propose a mechanism by which a signal peptide from a secretory or cell surface protein acts to promote the transport of a prion-binding polycationic PrP(C)-motif to a subcellular location where prion conversion occurs (most likely the Endosome Recycling Compartment), thereby targeting prion propagation.


Assuntos
Antígeno CD56/metabolismo , Proteínas PrPC/metabolismo , Sinais Direcionadores de Proteínas , Motivos de Aminoácidos , Animais , Antígeno CD56/química , Antígeno CD56/genética , Linhagem Celular Transformada , Camundongos , Proteínas PrPC/genética , Ligação Proteica
2.
J Chromatogr A ; 1717: 464670, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38310705

RESUMO

Increased demand for mRNA-based therapeutics and improved in vitro transcription (IVT) yields have challenged the mRNA purification platform. Hybridization-affinity chromatography with an immobilized oligo-deoxythymidilic acid (oligodT) ligand is often used to capture mRNA through base pairing with the polyadenylated tail. Commercially available oligodT matrices include perfusive cross-linked poly(styrene-divinylbenzene) 50 µm POROS™ chromatography resin beads and convective polymethacrylate CIMmultus® monolithic columns consisting of 2 µm interconnected channels. POROS™ columns may be limited by poor mass transfer for larger mRNAs and slow flowrates, while monoliths can operate at higher flowrates but are limited by modest binding capacity. To enable both high flowrates and binding capacity for mRNA of all lengths, prototype chromatography media was developed by Cytiva using oligodT immobilized electrospun cellulose nanofibers (Fibro™) with a 0.3-0.4 µm pore size. In this work, four polyadenylated mRNAs ranging from ∼1900-4300 nucleotides were used to compare the dynamic binding capacity (DBC) of Fibro™, POROS® and CIMmultus® columns as a function of residence time and binding buffer compositions. Fibro™ improved the DBC ∼2-4-fold higher than CIMmultus® and ∼2-13-fold higher than POROS™ across all residence times, mRNA length, and binding matrix compositions tested. CIMmultus® DBC was least dependent on residence time and mRNA size, while both Fibro™ and POROS™ DBC increased at slower flowrates and with shorter mRNA. Surprisingly, inverse size exclusion (ISE) experiments showed that POROS™ was not limited by diffusion and POROS™ along with CIMmultus® demonstrate higher mRNA permeation however the Fibro™ prototype is not in the final configuration. Lastly, IVT reaction products were subjected to purification and oligodT elution product yield, quality, and purity were consistent across the three matrices investigated. These results highlight the benefits of high DBC and equivalent product profiles offered by the oligodT Fibro™ prototype compared to commercially available oligodT media.


Assuntos
Nanofibras , Polímeros , Polímeros/química , RNA Mensageiro , Cromatografia de Afinidade/métodos , Celulose
3.
Nucleic Acids Res ; 39(12): 5284-98, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21345932

RESUMO

Numerous human genetic diseases are caused by mutations that give rise to aberrant alternative splicing. Recently, several of these debilitating disorders have been shown to be amenable for splice-correcting oligonucleotides (SCOs) that modify splicing patterns and restore the phenotype in experimental models. However, translational approaches are required to transform SCOs into usable drug products. In this study, we present a new cell-penetrating peptide, PepFect14 (PF14), which efficiently delivers SCOs to different cell models including HeLa pLuc705 and mdx mouse myotubes; a cell culture model of Duchenne's muscular dystrophy (DMD). Non-covalent PF14-SCO nanocomplexes induce splice-correction at rates higher than the commercially available lipid-based vector Lipofectamine 2000 (LF2000) and remain active in the presence of serum. Furthermore, we demonstrate the feasibility of incorporating this delivery system into solid formulations that could be suitable for several therapeutic applications. Solid dispersion technique is utilized and the formed solid formulations are as active as the freshly prepared nanocomplexes in solution even when stored at an elevated temperatures for several weeks. In contrast, LF2000 drastically loses activity after being subjected to same procedure. This shows that using PF14 is a very promising translational approach for the delivery of SCOs in different pharmaceutical forms.


Assuntos
Peptídeos Penetradores de Células/química , Lipopeptídeos/química , Oligonucleotídeos Antissenso/administração & dosagem , Processamento Alternativo , Animais , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/toxicidade , Células Cultivadas , Meios de Cultura , Meios de Cultura Livres de Soro , Endocitose , Células HeLa , Humanos , Cinética , Luz , Lipopeptídeos/metabolismo , Lipopeptídeos/toxicidade , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Nanoestruturas/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , Espalhamento de Radiação , Soluções , Temperatura
4.
Nucleic Acids Res ; 39(9): 3972-87, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21245043

RESUMO

While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential.


Assuntos
Peptídeos Penetradores de Células/química , Lipopeptídeos/química , Quinolinas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Animais , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/toxicidade , Células Cultivadas , Endossomos/metabolismo , Humanos , Indicadores e Reagentes , Mediadores da Inflamação/metabolismo , Lipídeos , Lipopeptídeos/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/toxicidade , Quinolinas/metabolismo
5.
Biochim Biophys Acta ; 1788(12): 2509-17, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19796627

RESUMO

Cell-penetrating peptides (CPPs) are membrane permeable vectors recognized for their intrinsic ability to gain access to the cell interior. The hydrophobic counter-anion, pyrenebutyrate, enhances cellular uptake of oligoarginine CPPs. To elucidate CPP uptake mechanisms, the effect of pyrenebutyrate on well-recognized CPPs with varying hydrophobicity and arginine content is investigated. The cellular CPP uptake and CPP-mediated oligonucleotide delivery is analyzed by fluorescence activated cell sorting, confocal microscopy, and a cell-based splice-switching assay. The splice-switching oligonucleotide is a mixmer of 2'-O-methyl RNA and locked nucleic acids delivered as a non-covalent complex with 10-fold molar CPP excess. CPP-induced membrane perturbation on large unilamellar vesicles is investigated in calcein release experiments. We observed that pyrenebutyrate facilitates cellular uptake and translocation of oligonucleotide mediated by oligoarginine nonamer while limited effect of pyrenebutyrate on more hydrophobic CPPs was observed. By combining the different experimental results we conclude that the pathway for cellular uptake of oligoarginine is dominated by direct membrane translocation, whereas the pathway for oligoarginine-mediated oligonucleotide translocation is dominated by endocytosis. Both mechanisms are promoted by pyrenebutyrate and we suggest that pyrenebutyrate has different sites of action for the two uptake and translocation mechanisms.


Assuntos
Peptídeos/química , Pirenos/química , Membrana Celular , DNA/química , DNA/farmacologia , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/farmacologia , Pirenos/farmacologia , RNA/química , RNA/farmacologia , Transfecção/métodos
6.
Biochem J ; 412(2): 307-13, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18271753

RESUMO

The use of antisense oligonucleotides to modulate splicing patterns has gained increasing attention as a therapeutic platform and, hence, the mechanisms of splice-switching oligonucleotides are of interest. Cells expressing luciferase pre-mRNA interrupted by an aberrantly spliced beta-globin intron, HeLa pLuc705, were used to monitor the splice-switching activity of modified oligonucleotides by detection of the expression of functional luciferase. It was observed that phosphorothioate 2'-O-methyl RNA oligonucleotides containing locked nucleic acid monomers provide outstanding splice-switching activity. However, similar oligonucleotides with several mismatches do not impede splice-switching activity which indicates a risk for off-target effects. The splice-switching activity is abolished when mismatches are introduced at several positions with locked nucleic acid monomers suggesting that it is the locked nucleic acid monomers that give rise to low mismatch discrimination to target pre-mRNA. The results highlight the importance of rational sequence design to allow for high efficiency with simultaneous high mismatch discrimination for splice-switching oligonucleotides and suggest that splice-switching activity is tunable by utilizing locked nucleic acid monomers.


Assuntos
Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Oligonucleotídeos Antissenso/genética , Splicing de RNA , RNA , Genes Reporter , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , Ácidos Nucleicos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Oligonucleotídeos Fosforotioatos , RNA/química , RNA/genética , RNA/metabolismo
7.
Future Med Chem ; 11(10): 1225-1236, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31280675

RESUMO

Exosomes are secreted by mammalian cells and are widely distributed in cellular systems. They are a medium of information and material transmission. The complexity of exosome nature and function is not thoroughly understood. Nevertheless, they are being confirmed as mediators of intercellular communication and play significant roles in many physiological and pathological processes. Significant obstacles to the efficient and robust isolation of large quantities of pure and specific exosomes still exist. These include a lack of understanding of the relationship between exosome characteristics and function, and a shortage of scalable solutions to separate specific exosomes from other large entities remain. Hence, generic production platforms are desired. While solutions suitable for exosome manufacturing under GMP are available, most have been developed for other purposes.


Assuntos
Técnicas de Cultura de Células/métodos , Exossomos/metabolismo , Animais , Reatores Biológicos , Comunicação Celular , Técnicas de Cultura de Células/instrumentação , Fracionamento Celular/instrumentação , Fracionamento Celular/métodos , Desenho de Equipamento , Exossomos/química , Exossomos/patologia , Humanos
8.
Bioconjug Chem ; 19(12): 2535-42, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19012426

RESUMO

Cell-penetrating peptides (CPPs) are a growing family of peptides that have opened a new avenue in drug delivery, allowing various hydrophilic macromolecules to enter cells. In accordance with most other cationic delivery vectors, CPPs seem to rely mostly on endocytosis for internalization. However, due to conflicting results the exact endocytic pathways for CPP uptake have not yet been resolved. Here, we evaluated the ability of seven CPPs, with different chemical properties, to convey peptide nucleic acids (PNAs) inside cells. Assays based on both splice correction, generating biologically active read-out, and on traditional fluorescence measurements were utilized. The same assays were employed to assess different endocytic pathways and the dependence on extracellular heparan sulfates for internalization. Both highly cationic CPPs (M918, penetratin, and Tat) and amphipathic peptides (transportan, TP10, MAP, and pVEC) were investigated in this study. Conjugate uptake relied on endocytosis for all seven peptides but splice-correcting activity varied greatly for the investigated CPPs. The exact endocytic internalization routes were evaluated through the use of well-known endocytosis inhibitors and tracers. In summary, the different chemical properties of CPPs have little correlation with their ability to efficiently deliver splice-correcting PNA. However, conjugates of polycationic and amphipathic peptides appear to utilize different internalization routes.


Assuntos
Endocitose , Peptídeos/metabolismo , Sequência de Aminoácidos , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Técnicas de Transferência de Genes , Células HeLa , Heparitina Sulfato/metabolismo , Humanos , Dados de Sequência Molecular , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Splicing de RNA/efeitos dos fármacos
9.
J Clin Invest ; 124(9): 4067-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25105368

RESUMO

X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton's tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of BTK pre-mRNA and severely impair B cell development. Here, we assessed the potential of antisense, splice-correcting oligonucleotides (SCOs) targeting mutated BTK transcripts for treating XLA. Both the SCO structural design and chemical properties were optimized using 2'-O-methyl, locked nucleic acid, or phosphorodiamidate morpholino backbones. In order to have access to an animal model of XLA, we engineered a transgenic mouse that harbors a BAC with an authentic, mutated, splice-defective human BTK gene. BTK transgenic mice were bred onto a Btk knockout background to avoid interference of the orthologous mouse protein. Using this model, we determined that BTK-specific SCOs are able to correct aberrantly spliced BTK in B lymphocytes, including pro-B cells. Correction of BTK mRNA restored expression of functional protein, as shown both by enhanced lymphocyte survival and reestablished BTK activation upon B cell receptor stimulation. Furthermore, SCO treatment corrected splicing and restored BTK expression in primary cells from patients with XLA. Together, our data demonstrate that SCOs can restore BTK function and that BTK-targeting SCOs have potential as personalized medicine in patients with XLA.


Assuntos
Agamaglobulinemia/terapia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Oligonucleotídeos/genética , Proteínas Tirosina Quinases/fisiologia , Splicing de RNA , Tirosina Quinase da Agamaglobulinemia , Agamaglobulinemia/enzimologia , Animais , Linfócitos B/metabolismo , Células Cultivadas , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Humanos , Luciferases/genética , Camundongos Transgênicos , Monócitos/enzimologia , Proteínas Tirosina Quinases/genética
10.
ISRN Pharm ; 2012: 407154, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22474606

RESUMO

MicroRNAs are short, endogenous RNAs that direct posttranscriptional regulation of gene expression vital for many developmental and cellular functions. Implicated in the pathogenesis of several human diseases, this group of RNAs provides interesting targets for therapeutic intervention. Anti-microRNA oligonucleotides constitute a class of synthetic antisense oligonucleotides used to interfere with microRNAs. In this study, we investigate the effects of chemical modifications and truncations on activity and specificity of anti-microRNA oligonucleotides targeting microRNA-21. We observed an increased activity but reduced specificity when incorporating locked nucleic acid monomers, whereas the opposite was observed when introducing unlocked nucleic acid monomers. Our data suggest that phosphorothioate anti-microRNA oligonucleotides yield a greater activity than their phosphodiester counterparts and that a moderate truncation of the anti-microRNA oligonucleotide improves specificity without significantly losing activity. These results provide useful insights for design of anti-microRNA oligonucleotides to achieve both high activity as well as efficient mismatch discrimination.

11.
Methods Mol Biol ; 683: 219-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21053133

RESUMO

The methods for evaluating internalization pathways of cellular CPP-mediated ON delivery utilizing a pre-mRNA splice correction assay and fluorescence-based quantification are described. Examples for characterization of CPP uptake routes, employing various endocytosis inhibitors, and special treatment conditions are demonstrated. The methods are developed to characterize cellular delivery of pre-mRNA splice switching peptide nucleic acids conjugated to CPPs by disulfide bond.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos/metabolismo , Oligonucleotídeos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Peptídeos Penetradores de Células/química , Dissulfetos/química , Portadores de Fármacos/química , Endocitose/efeitos dos fármacos , Fluorometria , Células HeLa , Humanos , Luciferases/genética , Dados de Sequência Molecular , Oligonucleotídeos/química , Oligonucleotídeos/genética , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Ácidos Nucleicos Peptídicos/metabolismo , Transporte Proteico , Splicing de RNA , Transfecção
12.
J Control Release ; 141(1): 42-51, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19744531

RESUMO

In recent years, oligonucleotide-based molecules have been intensely used to modulate gene expression. All these molecules share the common feature of being essentially impermeable over cellular membranes and they therefore require efficient delivery vectors. Cell-penetrating peptides are a group of delivery peptides that has been readily used for nucleic acid delivery. In particular, polyarginine and derivates thereof, i.e. the (RxR)(4) peptide, have been applied with success both in vitro and in vivo. A major problem, however, with these arginine-rich peptides is that they frequently remain trapped in endosomal compartments following internalization. The activity of polyarginine has previously been improved by conjugation to a stearyl moiety. Therefore, we sought to investigate what impact such modification would have on the pre-clinically used (RxR)(4) peptide for non-covalent delivery of plasmids and splice-correcting oligonucleotides (SCOs) and compare it with stearylated Arg9 and Lipofectamine 2000. We show that stearyl-(RxR)(4) mediates efficient plasmid transfections in several cell lines and the expression levels are significantly higher than when using unmodified (RxR)(4) or stearylated Arg9. Although the transfection efficiency is lower than with Lipofectamine 2000, we show that stearyl-(RxR)(4) is substantially less toxic. Furthermore, using a functional splice-correction assay, we show that stearyl-(RxR)(4) complexed with 2'-OMe SCOs promotes significant splice correction whereas stearyl-Arg9 fails to do so. Moreover, stearyl-(RxR)(4) promotes dose-dependent splice correction in parity with (RxR)(4)-PMO covalent conjugates, but at least 10-times lower concentration. These features make this stearic acid modified analog of (RxR)(4) an intriguing vector for future in vivo experiments.


Assuntos
Portadores de Fármacos/química , Ácidos Nucleicos/administração & dosagem , Peptídeos/química , Oligonucleotídeos Fosforotioatos/administração & dosagem , Ácidos Esteáricos/química , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Células CHO , Permeabilidade da Membrana Celular , Proliferação de Células , Cricetinae , Cricetulus , Citometria de Fluxo , Expressão Gênica , Células HeLa , Humanos , Lipídeos , Luciferases/genética , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/genética , Plasmídeos , Transfecção
13.
J Control Release ; 134(3): 221-7, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19105971

RESUMO

Aberrations in splicing patterns play a significant role in several diseases, and splice correction, together with other forms of gene regulation, is consequently an emerging therapeutic target. In order to achieve successful oligonucleotide transfection, efficient delivery vectors are generally necessary. In this study we present one such vector, the chemically modified cell-penetrating peptide (CPP) TP10, for efficient delivery of a splice-correcting 2'-OMe RNA oligonucleotide. Utilizing a functional splice correction assay, we assessed the transfection efficiency of non-covalent complexes of oligonucleotides and stearylated or cysteamidated CPPs. Stearylation of the CPPs Arg9 and penetratin, as well as cysteamidation of MPG and TP10, did not improve transfection, whereas the presence of an N-terminal stearyl group on TP10 improved delivery efficiency remarkably compared to the unmodified peptide. The splice correction levels observed with stearyl-TP10 are in fact in parity with the effects seen with the commercially available transfection agent Lipofectamine 2000. However, the inherent toxicity associated with cationic lipid-based transfections can be completely eliminated when using the stearylated TP10, making this vector highly promising for non-covalent delivery of negatively charged oligonucleotides.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Galanina/química , Técnicas de Transferência de Genes , Oligonucleotídeos Fosforotioatos/administração & dosagem , Proteínas Recombinantes de Fusão/química , Ácidos Esteáricos/química , Venenos de Vespas/química , Processamento Alternativo/genética , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Meios de Cultura , Células HeLa , Humanos , Lipídeos/química , Oligonucleotídeos Fosforotioatos/genética , Transfecção
14.
Nat Protoc ; 2(8): 2043-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17703217

RESUMO

Developing efficient delivery vectors for bioactive molecules is of great importance within both traditional and novel drug development, such as oligonucleotide (ON)-based therapeutics. To address delivery efficiency using cell-penetrating peptides (CPPs), we here present a protocol based on splice correction utilizing both neutral and anionic antisense ONs, either covalently conjugated via a disulfide bridge or non-covalently complexed, respectively, that generates positive readout in the form of luciferase expression. The decisive advantage of using splice correction for evaluation of CPPs is that the ON induces a biological response in contrast to traditionally used methods, for example, fluorescently labeled peptides. An emerging number of studies emphasize the role of endocytosis in translocation of CPPs, and this protocol is also utilized to determine the relative contribution of different endocytic pathways in the uptake of CPPs, which provides valuable information for future design of novel, more potent CPPs for bioactive cargoes.


Assuntos
Oligonucleotídeos Antissenso/administração & dosagem , Peptídeos/metabolismo , Transfecção/métodos , Transporte Biológico/fisiologia , Permeabilidade da Membrana Celular , Técnicas Citológicas , Endocitose , Fluorometria/métodos , Genes Reporter , Luciferases/análise , Luciferases/genética , Proteínas de Membrana Transportadoras/fisiologia , Oligonucleotídeos Antissenso/metabolismo , Sítios de Splice de RNA , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA