Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 141(17): 2100-2113, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36542832

RESUMO

The choice to postpone treatment while awaiting genetic testing can result in significant delay in definitive therapies in patients with severe pancytopenia. Conversely, the misdiagnosis of inherited bone marrow failure (BMF) can expose patients to ineffectual and expensive therapies, toxic transplant conditioning regimens, and inappropriate use of an affected family member as a stem cell donor. To predict the likelihood of patients having acquired or inherited BMF, we developed a 2-step data-driven machine-learning model using 25 clinical and laboratory variables typically recorded at the initial clinical encounter. For model development, patients were labeled as having acquired or inherited BMF depending on their genomic data. Data sets were unbiasedly clustered, and an ensemble model was trained with cases from the largest cluster of a training cohort (n = 359) and validated with an independent cohort (n = 127). Cluster A, the largest group, was mostly immune or inherited aplastic anemia, whereas cluster B comprised underrepresented BMF phenotypes and was not included in the next step of data modeling because of a small sample size. The ensemble cluster A-specific model was accurate (89%) to predict BMF etiology, correctly predicting inherited and likely immune BMF in 79% and 92% of cases, respectively. Our model represents a practical guide for BMF diagnosis and highlights the importance of clinical and laboratory variables in the initial evaluation, particularly telomere length. Our tool can be potentially used by general hematologists and health care providers not specialized in BMF, and in under-resourced centers, to prioritize patients for genetic testing or for expeditious treatment.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Pancitopenia , Humanos , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/terapia , Diagnóstico Diferencial , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Transtornos da Insuficiência da Medula Óssea/diagnóstico , Pancitopenia/diagnóstico
2.
Blood ; 142(3): 244-259, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084382

RESUMO

Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is caused by somatic mutations in UBA1 (UBA1mut) and characterized by heterogenous systemic autoinflammation and progressive hematologic manifestations, meeting criteria for myelodysplastic syndrome (MDS) and plasma cell dyscrasias. The landscape of myeloid-related gene mutations leading to typical clonal hematopoiesis (CH) in these patients is unknown. Retrospectively, we screened 80 patients with VEXAS for CH in their peripheral blood (PB) and correlated the findings with clinical outcomes in 77 of them. UBA1mut were most common at hot spot p.M41 (median variant allele frequency [VAF] = 75%). Typical CH mutations cooccurred with UBA1mut in 60% of patients, mostly in DNMT3A and TET2, and were not associated with inflammatory or hematologic manifestations. In prospective single-cell proteogenomic sequencing (scDNA), UBA1mut was the dominant clone, present mostly in branched clonal trajectories. Based on integrated bulk and scDNA analyses, clonality in VEXAS followed 2 major patterns: with either typical CH preceding UBA1mut selection in a clone (pattern 1) or occurring as an UBA1mut subclone or in independent clones (pattern 2). VAF in the PB differed markedly between DNMT3A and TET2 clones (median VAF of 25% vs 1%). DNMT3A and TET2 clones associated with hierarchies representing patterns 1 and 2, respectively. Overall survival for all patients was 60% at 10 years. Transfusion-dependent anemia, moderate thrombocytopenia, and typical CH mutations, each correlated with poor outcome. In VEXAS, UBA1mut cells are the primary cause of systemic inflammation and marrow failure, being a new molecularly defined somatic entity associated with MDS. VEXAS-associated MDS is distinct from classical MDS in its presentation and clinical course.


Assuntos
Hematopoiese Clonal , Dermatite , Humanos , Hematopoiese Clonal/genética , Estudos Prospectivos , Estudos Retrospectivos , Mutação
3.
Ann Rheum Dis ; 83(4): 508-517, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38049983

RESUMO

OBJECTIVES: Ageing and inflammation are associated with clonal haematopoiesis (CH), the emergence of somatic mutations in haematopoietic cells. This study details CH in patients with systemic vasculitis in association with clinical, haematological and immunological parameters. METHODS: Patients with three forms of vasculitis were screened for CH in peripheral blood by error-corrected sequencing. Relative contributions of age and vasculitis on CH prevalence were calculated using multivariable logistic regression. Clonal hierarchies were assessed by proteogenomic single-cell DNA sequencing, and functional experiments were performed in association with CH status. RESULTS: Patients with Takayasu's arteritis (TAK; n=70; mean age=33.2 years), antineutrophil cytoplasmic antibody-associated vasculitis (AAV; n=47; mean age=55.3 years) and giant cell arteritis (GCA; n=59; mean age=71.2 years) were studied. CH, most commonly in DNMT3A and TET2, was detected in 34% (60/176) of patients versus 18% (28/151) of age-matched controls (p<0.01). Prevalence of CH was independently associated with age (standardised B=0.96, p<0.01) and vasculitis (standardised B=0.46, p<0.01), occurring in 61%, 32% and 13% of patients with GCA, AAV and TAK, respectively. Both branched and linear clonal trajectories showed myeloid-lineage bias, and CH was associated with markers of cellular activation. In GCA, mutations were detected in temporal artery biopsies, and clinical relapse correlated with CH in a dose-dependent relationship with clone size. CONCLUSIONS: Age was more strongly associated with CH prevalence than inflammation in systemic vasculitis. Clonal profile was dominated by DNMT3A mutations which were associated with relapse in GCA. CH is not likely a primary causal factor in systemic vasculitis but may contribute to inflammation.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Arterite de Células Gigantes , Arterite de Takayasu , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Arterite de Células Gigantes/epidemiologia , Arterite de Takayasu/epidemiologia , Hematopoiese Clonal , Inflamação , Recidiva
4.
Blood ; 139(1): 34-43, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34525188

RESUMO

Patients with severe aplastic anemia (SAA) are either treated with bone marrow transplant (BMT) or immunosuppression (IST) depending on their age, comorbidities, and available donors. In 2017, our phase 2 trial reported improved hematologic responses with the addition of eltrombopag (EPAG) to standard IST for SAA when compared with a historical cohort treated with IST alone. However, the rates and characteristics of long-term complications, relapse, and clonal evolution, previously described in patients treated with IST alone, are not yet known with this new regimen, IST and EPAG. Patients were accrued from 2012 to 2020, with a total of 178 subjects included in this secondary endpoint analysis. With double the sample size and a much longer median follow-up (4 years) since the original publication in 2017, we report a cumulative relapse rate of 39% in responding patients who received cyclosporine (CSA) maintenance and clonal evolution of 15% in all treated patients at 4 years. Relapse occurred at distinct timepoints: after CSA dose reduction and EPAG discontinuation at 6 months, and after 2 years when CSA was discontinued. Most relapsed patients were retreated with therapeutic doses of CSA +/- EPAG, and two-thirds responded. Clonal evolution to a myeloid malignancy or chromosome 7 abnormality (high-risk) was noted in 5.7% of patients and conferred a poorer overall survival. Neither relapse nor high-risk evolution occurred at a higher rate than was observed in a historical comparator cohort, but the median time to both events was earlier in IST and EPAG treated patients. This trial was registered at www.clinicaltrials.gov as #NCT01623167.


Assuntos
Anemia Aplástica/tratamento farmacológico , Benzoatos/uso terapêutico , Ciclosporina/uso terapêutico , Hidrazinas/uso terapêutico , Imunossupressores/uso terapêutico , Pirazóis/uso terapêutico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
5.
Blood ; 140(13): 1496-1506, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35793467

RESUMO

Somatic mutations in UBA1 cause vacuoles, E1 ubiquitin-activating enzyme, X-linked, autoinflammatory somatic (VEXAS) syndrome, an adult-onset inflammatory disease with an overlap of hematologic manifestations. VEXAS syndrome is characterized by a high mortality rate and significant clinical heterogeneity. We sought to determine independent predictors of survival in VEXAS and to understand the mechanistic basis for these factors. We analyzed 83 patients with somatic pathogenic variants in UBA1 at p.Met41 (p.Met41Leu/Thr/Val), the start codon for translation of the cytoplasmic isoform of UBA1 (UBA1b). Patients with the p.Met41Val genotype were most likely to have an undifferentiated inflammatory syndrome. Multivariate analysis showed ear chondritis was associated with increased survival, whereas transfusion dependence and the p.Met41Val variant were independently associated with decreased survival. Using in vitro models and patient-derived cells, we demonstrate that p.Met41Val variant supports less UBA1b translation than either p.Met41Leu or p.Met41Thr, providing a molecular rationale for decreased survival. In addition, we show that these 3 canonical VEXAS variants produce more UBA1b than any of the 6 other possible single-nucleotide variants within this codon. Finally, we report a patient, clinically diagnosed with VEXAS syndrome, with 2 novel mutations in UBA1 occurring in cis on the same allele. One mutation (c.121 A>T; p.Met41Leu) caused severely reduced translation of UBA1b in a reporter assay, but coexpression with the second mutation (c.119 G>C; p.Gly40Ala) rescued UBA1b levels to those of canonical mutations. We conclude that regulation of residual UBA1b translation is fundamental to the pathogenesis of VEXAS syndrome and contributes to disease prognosis.


Assuntos
Nucleotídeos , Enzimas Ativadoras de Ubiquitina , Códon de Iniciação , Humanos , Mutação , Enzimas Ativadoras de Ubiquitina/genética , Ubiquitinação
6.
Mol Biol Rep ; 51(1): 754, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874681

RESUMO

BACKGROUND: Telomeropathies are a group of inherited disorders caused by germline pathogenic variants in genes involved in telomere maintenance, resulting in excessive telomere attrition that affects several tissues, including hematopoiesis. RecQ and RTEL1 helicases contribute to telomere maintenance by unwinding telomeric structures such as G-quadruplexes (G4), preventing replication defects. Germline RTEL1 variants also are etiologic in telomeropathies. METHODS AND RESULTS: Here we investigated the expression of RecQ (RECQL1, BLM, WRN, RECQL4, and RECQL5) and RTEL1 helicase genes in peripheral blood mononuclear cells (PBMCs) from human telomeropathy patients. The mRNA expression levels of all RecQ helicases, but not RTEL1, were significantly downregulated in patients' primary cells. Reduced RecQ expression was not attributable to cell proliferative exhaustion, as RecQ helicases were not attenuated in T cells exhausted in vitro. An additional fifteen genes involved in DNA damage repair and RecQ functional partners also were downregulated in the telomeropathy cells. CONCLUSION: These findings indicate that the expression of RecQ helicases and functional partners involved in DNA repair is downregulated in PBMCs of telomeropathy patients.


Assuntos
Leucócitos Mononucleares , RecQ Helicases , Adulto , Feminino , Humanos , Masculino , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Leucócitos Mononucleares/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Telômero/metabolismo , Telômero/genética , Homeostase do Telômero/genética
7.
N Engl J Med ; 383(27): 2628-2638, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33108101

RESUMO

BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders. METHODS: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function. RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet's syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation. CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).


Assuntos
Doenças Autoimunes/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Inflamação/genética , Mutação de Sentido Incorreto , Enzimas Ativadoras de Ubiquitina/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Exoma/genética , Genótipo , Arterite de Células Gigantes/genética , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Síndromes Mielodisplásicas/genética , Poliarterite Nodosa/genética , Policondrite Recidivante/genética , Análise de Sequência de DNA , Síndrome de Sweet/genética , Síndrome
8.
Haematologica ; 108(5): 1300-1312, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579443

RESUMO

Androgens have been reported to elongate telomeres in retrospective and prospective trials with patients with telomeropathies, mainly with bone marrow failure. In our single-arm prospective clinical trial (clinicaltrials gov. Identifier: NCT02055456), 17 patients with short telomeres and/or germline pathogenic variants in telomere biology genes associated with at least one cytopenia and/or radiologic diagnosis of interstitial lung disease were treated with 5 mg/kg of intramuscular nandrolone decanoate every 15 days for 2 years. Ten of 13 evaluable patients (77%) showed telomere elongation at 12 months by flow-fluorescence in situ hybridization (average increase, 0.87 kb; 95% confidence interval: 0.20-1.55 kb; P=0.01). At 24 months, all ten evaluable patients showed telomere elongation (average increase, 0.49 kb; 95% confidence interval: 0.24-1.23 kb; P=0.18). Hematologic response was achieved in eight of 16 patients (50%) with marrow failure at 12 months, and in ten of 16 patients (63%) at 24 months. Seven patients had interstitial lung disease at baseline, and two and three had pulmonary response at 12 and 24 months, respectively. Two patients died due to pulmonary failure during treatment. In the remaining evaluable patients, the pulmonary function remained stable or improved, but showed consistent decline after cessation of treatment. Somatic mutations in myeloid neoplasm-related genes were present in a minority of patients and were mostly stable during drug treatment. The most common adverse events were elevations in liver function test levels in 88%, acne in 59%, and virilization in 59%. No adverse events grade ≥4 was observed. Our findings indicate that nandrolone decanoate elongates telomeres in patients with telomeropathies, which correlated with clinical improvement in some cases and tolerable adverse events.


Assuntos
Doenças Pulmonares Intersticiais , Humanos , Hibridização in Situ Fluorescente , Decanoato de Nandrolona , Estudos Prospectivos , Estudos Retrospectivos , Telômero
9.
Haematologica ; 107(8): 1815-1826, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587721

RESUMO

Although cell-free DNA (cfDNA) tests have emerged as a potential non-invasive alternative to bone marrow biopsies for monitoring clonal hematopoiesis in hematologic diseases, whether commercial cfDNA assays can be implemented for the detection and quantification of de novo clonal hematopoiesis in place of blood cells is uncertain. In this study, peripheral plasma cfDNA samples available from patients with aplastic anemia (n=25) or myelodysplastic syndromes (n=27) and a healthy cohort (n=107) were screened for somatic variants in genes related to hematologic malignancies using a Clinical Laboratory Improvement Amendments-certified panel. Results were further compared to DNA sequencing of matched blood cells. In reported results, 85% of healthy subjects, 36% of patients with aplastic anemia and 74% of patients with myelodysplastic syndromes were found to have somatic cfDNA variants, most frequently in DNMT3A, TET2, ASXL1 and SF3B1. However, concordance between cfDNA and blood cell findings was poor for the detection of clonal hematopoiesis when the allele frequency of the variants was <10%, which was mostly observed in the healthy and aplastic anemia cohorts but not in patients with myelodysplastic syndromes. After filtering data for potential artifacts due to low variant allele frequency and sequencing depth, the frequency of clonal hematopoiesis in cfDNA from healthy individuals and patients with aplastic anemia decreased to 52% and 20%, respectively. cfDNA and matched blood cells were not interchangeable for tracking changes in allele burdens as their agreement by Bland-Altman analysis was poor. A commercial cfDNA assay had good performance for de novo detection of clonal hematopoiesis in myelodysplastic syndromes, but showed no advantage over blood cells in diseases with low allele burdens or in healthy individuals.


Assuntos
Anemia Aplástica , Ácidos Nucleicos Livres , Síndromes Mielodisplásicas , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Ácidos Nucleicos Livres/genética , Hematopoiese Clonal/genética , Hematopoese/genética , Humanos , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética
10.
Br J Haematol ; 192(3): 605-614, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410523

RESUMO

Acquired severe aplastic anaemia (SAA) has an immune pathogenesis, and immunosuppressive therapy (IST) with anti-thymocyte globulin and cyclosporine is effective therapy. Eltrombopag (EPAG) added to standard IST was associated with higher overall and complete response rates in patients with treatment-naïve SAA compared to a historical IST cohort. We performed a paediatric subgroup analysis of this trial including all patients aged <18 years who received EPAG plus standard IST (n = 40 patients) compared to a historical cohort (n = 87) who received IST alone. Response, relapse, clonal evolution, event-free survival (EFS), and overall survival were assessed. There was no significant difference in either the overall response rate (ORR) or complete response rate at 6 months (ORR 70% in EPAG group, 72% in historical group, P = 0·78). Adults (≥18 years) had a significantly improved ORR of 82% with EPAG compared to 58% historically (P < 0·001). Younger children had lower response rates than did adolescents. The trend towards relapse was higher and EFS significantly lower in children who received EPAG compared to IST alone. Addition of EPAG added to standard IST did not improve outcomes in children with treatment-naïve SAA. EPAG in the paediatric population should not automatically be considered standard of care. Registration: clinicaltrials.gov (NCT01623167).


Assuntos
Anemia Aplástica/tratamento farmacológico , Soro Antilinfocitário/uso terapêutico , Benzoatos/uso terapêutico , Ciclosporina/uso terapêutico , Hidrazinas/uso terapêutico , Imunossupressores/uso terapêutico , Pirazóis/uso terapêutico , Adolescente , Anemia Aplástica/imunologia , Criança , Feminino , Humanos , Masculino , Resultado do Tratamento
11.
Haematologica ; 105(12): 2785-2794, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33256377

RESUMO

Myelodysplastic syndromes (MDS) are a group of clonal myeloid disorders characterized by cytopenia and a propensity to develop acute myeloid leukemia (AML). The management of lower-risk (LR) MDS with persistent cytopenias remains suboptimal. Eltrombopag (EPAG), a thrombopoietin receptor agonist, can improve platelet counts in LR-MDS and tri-lineage hematopoiesis in aplastic anemia (AA). We conducted a phase 2 dose modification study to investigate the safety and efficacy of EPAG in LR-MDS. EPAG dose was escalated from 50 mg/day, to a maximum of 150 mg/day over a period of 16 weeks. The primary efficacy endpoint was hematologic response at 16-20 weeks. Eleven of 25 (44%) patients responded; five and six patients had uni- or bi-lineage hematologic responses, respectively. The predictors of response were presence of a PNH clone, marrow hypocellularity, thrombocytopenia with or without other cytopenia, and elevated plasma thrombopoietin levels at study entry. The safety profile was consistent with previous EPAG studies in AA; no patients discontinued drug due to adverse events. Three patients developed reversible grade-3 liver toxicity and one patient had increased reticulin fibrosis. Ten patients discontinued EPAG after achieving a robust response (median time 16 months); four of them reinitiated EPAG due to declining counts, and all attained a second robust response. Six patients had disease progression not associated with expansion of mutated clones and no patient progressed to AML on study. In conclusion, EPAG was well-tolerated and effective in restoring hematopoiesis in patients with low to intermediate-1 risk MDS. This study was registered at clinicaltrials.gov as #NCT00932156.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Benzoatos/efeitos adversos , Hematopoese , Humanos , Hidrazinas/efeitos adversos , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Pirazóis
12.
Hum Genet ; 138(11-12): 1323-1330, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31677132

RESUMO

Phenotypic heterogeneity is often observed in patients with telomeropathies caused by pathogenic variants in telomere biology genes. However, the roles of recessive variants in these different phenotypes are not fully characterized. Our goal is to describe the biological roles of a novel homozygous RTEL1 variant identified in a consanguineous Lebanese family with unusual presentation of telomeropathies. A proband was screened for germline variants in telomere biology genes by whole exome sequencing. Leukocytes' telomere length was measured in the proband and eight relatives. We identified a novel homozygous p.E665K RTEL1 variant in the proband, his mother, and seven siblings that associated with telomere shortening and a broad spectrum of clinical manifestations, ranging from mild unspecific findings to severe phenotypes. Consanguinity in at least three family generations led to increased frequency of the homozygous p.E665K variant in the youngest generation and progressive telomere shortening. The increased frequency of the homozygous RTEL1 variant due to consanguinity in this Lebanese family allowed us to infer novel behaviors of recessive RTEL1 variants, as the expressivity and penetrance of this gene are very heterogenous between inter- and intra-generations. Progressive telomere shortening was associated with disease anticipation, first reported in recessive autosomal telomeropathies. Both genetic testing and telomere length measurement were critical for the clinical diagnosis of this family with telomere diseases marked by phenotypic heterogeneity.


Assuntos
Consanguinidade , DNA Helicases/genética , Doenças Genéticas Inatas/epidemiologia , Homozigoto , Mutação , Telômero/genética , Adolescente , Adulto , Feminino , Doenças Genéticas Inatas/genética , Humanos , Líbano/epidemiologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
13.
Genet Med ; 21(7): 1594-1602, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523342

RESUMO

PURPOSE: The acquisition of pathogenic variants in the TERT promoter (TERTp) region is a mechanism of tumorigenesis. In nonmalignant diseases, TERTp variants have been reported only in patients with idiopathic pulmonary fibrosis (IPF) due to germline variants in telomere biology genes. METHODS: We screened patients with a broad spectrum of telomeropathies (n = 136), their relatives (n = 52), and controls (n = 195) for TERTp variants using a customized massively parallel amplicon-based sequencing assay. RESULTS: Pathogenic -124 and -146 TERTp variants were identified in nine (7%) unrelated patients diagnosed with IPF (28%) or moderate aplastic anemia (4.6%); five of them also presented cirrhosis. Five (10%) relatives were also found with these variants, all harboring a pathogenic germline variant in telomere biology genes. TERTp clone selection did not associate with peripheral blood counts, telomere length, and response to danazol treatment. However, it was specific for patients with telomeropathies, more frequently co-occurring with TERT germline variants and associated with aging. CONCLUSION: We extend the spectrum of nonmalignant diseases associated with pathogenic TERTp variants to marrow failure and liver disease due to inherited telomerase deficiency. Specificity of pathogenic TERTp variants for telomerase dysfunction may help to assess the pathogenicity of unclear constitutional variants in the telomere diseases.


Assuntos
Regiões Promotoras Genéticas , Telomerase/genética , Telômero/patologia , Adolescente , Adulto , Idoso , Anemia Aplástica/genética , Contagem de Células Sanguíneas , Doenças da Medula Óssea/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Fibrose Pulmonar Idiopática/genética , Hepatopatias/genética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Telomerase/deficiência , Adulto Jovem
14.
Ann Hematol ; 98(2): 301-312, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30426156

RESUMO

Aplastic anemia (AA) is the most serious non-malignant blood disorder in Pakistan, ranked second in prevalence, after thalassemia. We investigated various epidemiological, clinical, and genetic factors of AA in a Pakistani cohort of 214 patients reporting at our hospital between June 2014 and December 2015. A control group of 214 healthy subjects was included for comparison of epidemiological and clinical features. Epidemiological data revealed 2.75-fold higher frequency of AA among males. A single peak of disease onset was observed between ages 10 and 29 years followed by a steady decline. AA was strongly associated with lower socioeconomic profile, rural residence, and high rate of consanguineous marriages. Serum granulocyte colony-stimulating factor and thrombopoietin levels were significantly elevated in AA patients, compared to healthy controls (P < 0.0001), while there was no statistical significance in other nine cytokine levels screened. Allele frequencies of DRB1*15 (56.8%) and DQB1*06 (70.3%) were predominantly high in AA patients. Ten mutations were found in TERT and TERC genes, including two novel mutations (Val526Ala and Val777Met) in exons 3 and 7 of TERT gene. Despite specific features of the AA cohort, this study suggests that epidemiologic and etiologic factors as well as host genetic predisposition exclusively or cooperatively trigger AA in Pakistan.


Assuntos
Anemia Aplástica , Mutação de Sentido Incorreto , Adolescente , Adulto , Idade de Início , Substituição de Aminoácidos , Anemia Aplástica/sangue , Anemia Aplástica/epidemiologia , Anemia Aplástica/genética , Criança , Feminino , Frequência do Gene , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/genética , Cadeias beta de HLA-DQ/sangue , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/sangue , Cadeias HLA-DRB1/genética , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão/epidemiologia , Fatores Sexuais , Fatores Socioeconômicos , Telomerase/sangue , Telomerase/genética , Trombopoetina/sangue , Trombopoetina/genética
15.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 138-150, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27836509

RESUMO

Leishmaniasis is a spectrum of diseases caused by parasites of the genus Leishmania that affects millions of people around the world. During infection, the parasites use different strategies to survive the host's defenses, including overcoming exposure to reactive oxidant species (ROS), responsible for causing damage to lipids, proteins and DNA. This damage especially affects telomeres, which frequently results in genome instability, senescence and cell death. Telomeres are the physical ends of the chromosomes composed of repetitive DNA coupled with proteins, whose function is to protect the chromosomes termini and avoid end-fusion and nucleolytic degradation. In this work, we induced acute oxidative stress in promastigote forms of Leishmania amazonensis by treating parasites with 2mM hydrogen peroxide (H2O2) for 1h, which was able to increase intracellular ROS levels. In addition, oxidative stress induced DNA damage, as confirmed by 8-oxodGuo quantification and TUNEL assays and the dissociation of LaRPA-1 from the 3' G-overhang, leading to telomere shortening. Moreover, LaRPA-1 was observed to interact with newly formed C-rich single-stranded telomeric DNA, probably as a consequence of the DNA damage response. Nonetheless, acute oxidative stress caused the death of some of the L. amazonensis population and induced cell cycle arrest at the G2/M phase in survivor parasites, which were able to continue proliferating and replicating DNA and became more resistant to oxidative stress. Taken together, these results suggest that adaptation occurs through the selection of the fittest parasites in terms of repairing oxidative DNA damage at telomeres and maintaining genome stability in a stressful environment.


Assuntos
Adaptação Fisiológica/genética , Reparo do DNA , DNA de Protozoário/genética , Peróxido de Hidrogênio/farmacologia , Leishmania mexicana/efeitos dos fármacos , Encurtamento do Telômero/efeitos dos fármacos , Sequência de Bases , Dano ao DNA , DNA de Protozoário/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Expressão Gênica , Aptidão Genética , Leishmania mexicana/genética , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/metabolismo , Estresse Oxidativo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Seleção Genética , Estresse Fisiológico , Telômero/química
16.
Blood Cells Mol Dis ; 69: 10-22, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29324392

RESUMO

DNA methyltransferase 3A (DNMT3A) mediates de novo DNA methylation. Mutations in DNMT3A are associated with hematological malignancies, most frequently acute myeloid leukemia. DNMT3A mutations are hypothesized to establish a pre-leukemic state, rendering cells vulnerable to secondary oncogenic mutations and malignant transformation. However, the mechanisms by which DNMT3A mutations contribute to leukemogenesis are not well-defined. Here, we successfully created four DNMT3A-mutated K562 cell lines with frameshift mutations resulting in truncated DNMT3A proteins. DNMT3A-mutated cell lines exhibited significantly impaired growth and increased apoptotic activity compared to wild-type (WT) cells. Consistent with previous studies, DNMT3A-mutated cells displayed impaired differentiation capacity. RNA-seq was used to compare transcriptomes of DNMT3A-mutated and WT cells; DNMT3A ablation resulted in downregulation of genes involved in spliceosome function, causing dysfunction of RNA splicing. Unexpectedly, we observed DNMT3A-mutated cells to exhibit marked genomic instability and an impaired DNA damage response compared to WT. CRISPR/Cas9-mediated DNMT3A-mutated K562 cells may be used to model effects of DNMT3A mutations in human cells. Our findings implicate aberrant splicing and induction of genomic instability as potential mechanisms by which DNMT3A mutations might predispose to malignancy.


Assuntos
Sistemas CRISPR-Cas , DNA (Citosina-5-)-Metiltransferases/genética , Edição de Genes , Instabilidade Genômica , Splicing de RNA , Apoptose/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dano ao DNA , DNA Metiltransferase 3A , Humanos , Células K562 , Mutação , Análise de Sequência de DNA , Spliceossomos/metabolismo
17.
Haematologica ; 103(7): 1150-1159, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29674506

RESUMO

Exosomal microRNAs modulate cancer cell metabolism and the immune response. Specific exosomal microRNAs have been reported to be reliable biomarkers of several solid and hematologic malignancies. We examined the possible diagnostic and prognostic values of exosomal microRNAs in two human bone marrow failure diseases: aplastic anemia and myelodysplastic syndromes. After screening 372 microRNAs in a discovery set (n=42) of plasma exosome samples, we constructed a customized PCR plate, including 42 microRNAs, for validation in a larger cohort (n=99). We identified 25 differentially expressed exosomal microRNAs uniquely or frequently present in aplastic anemia and/or myelodysplastic syndromes. These microRNAs could be related to intracellular functions, such as metabolism, cell survival, and proliferation. Clinical parameters and progression-free survival were correlated to microRNA expression levels in aplastic anemia and myelodysplastic syndrome patients before and after six months of immunosuppressive therapy. One microRNA, mir-126-5p, was negatively correlated with a response to therapy in aplastic anemia: patients with higher relative expression of miR-126-5p at diagnosis had the shortest progression-free survival compared to those with lower or normal levels. Our findings suggest utility of exosomal microRNAs in the differential diagnosis of bone marrow failure syndromes. (Registered at clinicaltrials.gov identifiers: 00260689, 00604201, 00378534, 01623167, 00001620, 00001397, 00217594).


Assuntos
Anemia Aplástica/genética , MicroRNA Circulante , Exossomos , MicroRNAs/genética , Síndromes Mielodisplásicas/genética , Anemia Aplástica/sangue , Anemia Aplástica/diagnóstico , Anemia Aplástica/terapia , Biomarcadores , Estudos de Casos e Controles , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , MicroRNAs/sangue , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/terapia , Prognóstico , Reprodutibilidade dos Testes
19.
Hematology Am Soc Hematol Educ Program ; 2023(1): 548-555, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066926

RESUMO

The inherited bone marrow failure syndromes (IBMFS) are a heterogenous group of disorders caused by germline mutations in related genes and characterized by bone marrow failure (BMF), disease specific organ involvement, and, in most cases, predisposition to malignancy. Their distinction from immune marrow failure can often be challenging, particularly when presentations occur in adulthood or are atypical. A combination of functional (disease specific assays) and genetic testing is optimal in assessing all new BMF patients for an inherited etiology. However, genetic testing is costly and may not be available worldwide due to resource constraints; in such cases, clinical history, standard laboratory testing, and the use of algorithms can guide diagnosis. Interpretation of genetic results can be challenging and must reflect assessment of pathogenicity, inheritance pattern, clinical phenotype, and specimen type used. Due to the progressive use of genomics, new IBMFS continue to be identified, widening the spectrum of these disorders.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Pancitopenia , Adulto , Humanos , Medula Óssea , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Síndrome Congênita de Insuficiência da Medula Óssea , Transtornos da Insuficiência da Medula Óssea
20.
Semin Hematol ; 59(3): 156-166, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36115693

RESUMO

Somatic mutations have been increasingly identified as etiologic for many hematologic and autoinflammatory disorders. VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome and Erdheim-Chester disease (ECD), a type of histiocytosis, can be classified as inflammatory myeloid diseases, characterized by systemic inflammation and multi-organ disease with predisposition to myeloid malignancies. VEXAS is a novel disease caused by UBA1 mutations that was first discovered using a genotype-driven approach (genotype was used to identify patients with undiagnosed inflammatory diseases). Since the initial description, many VEXAS cases have been reported and disease phenotype is expanding rapidly. In contrast, ECD was first characterized in the 1930s based on patients' phenotype, and only recently found to be caused by recurrent somatic mutations in the MAPK pathway (traditional phenotype-driven approach). The discovery of these mutations and development of target therapies have revolutionized the treatment of patients with histiocytosis, particularly ECD. Here we discuss the impact of causal and associated somatic mutations in VEXAS and ECD at both clinical and molecular levels.


Assuntos
Doença de Erdheim-Chester , Doença de Erdheim-Chester/diagnóstico , Doença de Erdheim-Chester/tratamento farmacológico , Doença de Erdheim-Chester/genética , Humanos , Inflamação/patologia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA