Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 166(2): 960-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25185120

RESUMO

The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K(+) channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Ativação do Canal Iônico , Dados de Sequência Molecular , Canais de Potássio Corretores do Fluxo de Internalização/química , Homologia de Sequência de Aminoácidos
2.
Cell Mol Life Sci ; 71(21): 4275-83, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24770793

RESUMO

Two-pore channel proteins (TPC) encode intracellular ion channels in both animals and plants. In mammalian cells, the two isoforms (TPC1 and TPC2) localize to the endo-lysosomal compartment, whereas the plant TPC1 protein is targeted to the membrane surrounding the large lytic vacuole. Although it is well established that plant TPC1 channels activate in a voltage- and calcium-dependent manner in vitro, there is still debate on their activation under physiological conditions. Likewise, the mode of animal TPC activation is heavily disputed between two camps favoring as activator either nicotinic acid adenine dinucleotide phosphate (NAADP) or the phosphoinositide PI(3,5)P2. Here, we investigated TPC current responses to either of these second messengers by whole-vacuole patch-clamp experiments on isolated vacuoles of Arabidopsis thaliana. After expression in mesophyll protoplasts from Arabidopsis tpc1 knock-out plants, we detected the Arabidopsis TPC1-EGFP and human TPC2-EGFP fusion proteins at the membrane of the large central vacuole. Bath (cytosolic) application of either NAADP or PI(3,5)P2 did not affect the voltage- and calcium-dependent characteristics of AtTPC1-EGFP. By contrast, PI(3,5)P2 elicited large sodium currents in hTPC2-EGFP-containing vacuoles, while NAADP had no such effect. Analogous results were obtained when PI(3,5)P2 was applied to hTPC2 expressed in baker's yeast giant vacuoles. Our results underscore the fundamental differences in the mode of current activation and ion selectivity between animal and plant TPC proteins and corroborate the PI(3,5)P2-mediated activation and Na(+) selectivity of mammalian TPC2.


Assuntos
Canais de Cálcio/metabolismo , Fosfatos de Fosfatidilinositol/química , Antibacterianos/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Cálcio/metabolismo , Citosol/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligantes , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Neomicina/química , Técnicas de Patch-Clamp , Isoformas de Proteínas/metabolismo , Verapamil/química , Zinco/química
3.
J Physiol ; 590(15): 3421-30, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22641774

RESUMO

Functional characterization of intracellular transporters is hampered by the inaccessibility of animal endomembranes to standard electrophysiological techniques. Here, we used Arabidopsis mesophyll protoplasts as a novel heterologous expression system for the lysosomal chloride­proton exchanger CLC-7 from rat. Following transient expression of a rCLC-7:EGFP construct in isolated protoplasts, the fusion protein efficiently targeted to the membrane of the large central vacuole, the lytic compartment of plant cells. Membrane currents recorded from EGFP-positive vacuoles were almost voltage independent and showed time-dependent activation at elevated positive membrane potentials as a hallmark. The shift in the reversal potential of the current induced by a decrease of cytosolic pH was compatible with a 2Cl(-)/1H(+) exchange stoichiometry. Mutating the so-called gating glutamate into alanine (E245A) uncoupled chloride fluxes from the movement of protons, transforming the transporter into a chloride channel-like protein. Importantly, CLC-7 transport activity in the vacuolar expression system was recorded in the absence of the auxiliary subunit Ostm1, differently to recent data obtained in Xenopus oocytes using a CLC-7 mutant with partial plasma membrane expression. We also show that plasma membrane-targeted CLC-7(E245A) is non-functional in Xenopus oocytes when expressed without Ostm1. In summary, our data suggest the existence of an alternative CLC-7 operating mode, which is active when the protein is not in complex with Ostm1. The vacuolar expression system has the potential to become a valuable tool for functional studies on intracellular ion channels and transporters from animal cells.


Assuntos
Arabidopsis , Canais de Cloreto/fisiologia , Vacúolos/fisiologia , Animais , Feminino , Corantes Fluorescentes , Proteínas de Fluorescência Verde/fisiologia , Oócitos/fisiologia , Folhas de Planta , Ratos , Proteínas Recombinantes de Fusão/fisiologia , Xenopus
4.
J Exp Bot ; 63(17): 6187-97, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23105130

RESUMO

Polyunsaturated fatty acids (PUFAs) are powerful modulators of several animal ion channels. It is shown here that PUFAs strongly affect the activity of the Slow Vacuolar (SV) channel encoded by the plant TPC1 gene. The patch-clamp technique was applied to isolated vacuoles from carrot taproots and Arabidopsis thaliana mesophyll cells and arachidonic acid (AA) was chosen as a model molecule for PUFAs. Our study was extended to different PUFAs including the endogenous alpha-linolenic acid (ALA). The addition of micromolar concentrations of AA reversibly inhibited the SV channel decreasing the maximum open probability and shifting the half activation voltage to positive values. Comparing the effects of different PUFAs, it was found that the length of the lipophilic acyl chain, the number of double bonds and the polar head were critical for channel modulation.The experimental data can be reproduced by a simple three-state model, in which PUFAs do not interact directly with the voltage sensors but affect the voltage-independent transition that leads the channel from the open state to the closed configuration. The results indicate that lipids play an important role in co-ordinating ion channel activities similar to what is known from animal cells.


Assuntos
Arabidopsis/fisiologia , Ácido Araquidônico/farmacologia , Daucus carota/fisiologia , Ácidos Graxos Insaturados/farmacologia , Canais Iônicos/metabolismo , Vacúolos/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Ácido Araquidônico/química , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Daucus carota/efeitos dos fármacos , Eletrofisiologia , Ácidos Graxos Insaturados/química , Ativação do Canal Iônico , Cinética , Ácido Linoleico/metabolismo , Potenciais da Membrana , Células do Mesofilo/fisiologia , Modelos Biológicos , Ácidos Oleicos/metabolismo , Técnicas de Patch-Clamp , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Ácido alfa-Linolênico/metabolismo
5.
Plant J ; 58(1): 175-82, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19067975

RESUMO

Combined application of the patch-clamp technique and fura-2 fluorescence detection enables the study of study calcium fluxes or related increases in cytosolic calcium concentration. Here we used the excised patch configuration, focusing the photomultiplier on the tip of the recording pipette where the fluorescent dye was present (FLEP, fluorescence combined with excised patch). This configuration has several advantages, i.e. a lack of delay in loading the fluorophore, of interference by internal calcium buffers and of photobleaching, due to the quasi-infinite dye reservoir inside the pipette. Upon voltage stimulation of tonoplast patches, sustained and robust fluorescence signals indicated permeation of calcium through the slow vacuolar (SV) channel. Both SV currents and fluorescence signal changes were absent in the presence of SV channel inhibitors and in vacuoles from Arabidopsis tpc1 knockout plants that lack SV channel activity. The fractional calcium currents of this non-selective cation channel were voltage-dependent, and were approximately 10% of the total SV currents at elevated positive potentials. Interestingly, calcium permeation could be recorded as the same time as oppositely directed potassium fluxes. These events would have been impossible to detect using patch-clamp measurements alone. Thus, we propose use of the FLEP technique for the study of divalent ion-selective channels or transporters that may be difficult to access using conventional electrophysiological approaches.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Daucus carota/metabolismo , Técnicas de Patch-Clamp/métodos , Cálcio/análise , Citosol/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Fura-2/metabolismo , Potenciais da Membrana , Técnicas de Patch-Clamp/instrumentação , Canais de Potássio/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA