Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Physiol Plant ; 174(1): e13607, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837246

RESUMO

The low bioavailability of nutrients, especially nitrogen (N) and phosphorus (P), is one of the most limiting factors for crop production. In this study, under N- and P-free nutrient solution (-N-P), nodulating white lupin plants developed some nodules and analogous cluster root structures characterized by different morphological, physiological, and molecular responses than those observed upon single nutrient deficiency (strong acidification of external media, a better nutritional status than -N+P and +N-P plants). The multi-elemental analysis highlighted that the concentrations of nutrients in white lupin plants were mainly affected by P availability. Gene-expression analyses provided evidence of interconnections between N and P nutritional pathways that are active to promote N and P balance in plants. The root exudome was mainly characterized by N availability in nutrient solution, and, in particular, the absence of N and P in the nutrient solution triggered a high release of phenolic compounds, nucleosides monophosphate and saponines by roots. These morphological, physiological, and molecular responses result from a close interplay between N and P nutritional pathways. They contribute to the good development of nodulating white lupin plants when grown on N- and P-free media. This study provides evidence that limited N and P availability in the nutrient solution can promote white lupin-Bradyrhizobium symbiosis, which is favourable for the sustainability of legume production.


Assuntos
Bradyrhizobium , Lupinus , Bradyrhizobium/fisiologia , Lupinus/metabolismo , Fixação de Nitrogênio/fisiologia , Fósforo/metabolismo , Raízes de Plantas/metabolismo
2.
J Exp Bot ; 72(15): 5336-5355, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34009335

RESUMO

Indolamines are tryptophan-derived specialized metabolites belonging to the huge and ubiquitous indole alkaloids group. Serotonin and melatonin are the best-characterized members of this family, given their many hormonal and physiological roles in animals. Following their discovery in plants, the study of plant indolamines has flourished and their involvement in important processes, including stress responses, growth and development, and reproduction, has been proposed, leading to their classification as a new category of phytohormones. However, the complex indolamine puzzle is far from resolved, particularly the biological roles of tryptamine, the early serotonin precursor representing the central hub of many downstream indole alkaloids. Tryptophan decarboxylase, which catalyzes the synthesis of tryptamine, strictly regulates the flux of carbon and nitrogen from the tryptophan pool into the indolamine pathway. Furthermore, tryptamine accumulates to high levels in the reproductive organs of many plant species and therefore cannot be classed as a mere intermediate but rather as an end product with potentially important functions in fruits and seeds. This review summarizes current knowledge on the role of tryptamine and its close relative serotonin, emphasizing the need for a clear understanding of the functions of, and mutual relations between, these indolamines and their biosynthesis pathways in plants.


Assuntos
Serotonina , Triptaminas , Descarboxilases de Aminoácido-L-Aromático , Reguladores de Crescimento de Plantas , Plantas
3.
Plant J ; 93(2): 270-285, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29160608

RESUMO

Fruits stored at low temperature can exhibit different types of chilling injury. In apple, one of the most serious physiological disorders is superficial scald, which is characterized by discoloration and brown necrotic patches on the fruit exocarp. Although this phenomenon is widely ascribed to the oxidation of α-farnesene, its physiology is not yet fully understood. To elucidate the mechanism of superficial scald development and possible means of prevention, we performed an integrated metabolite screen, including an analysis of volatiles, phenols and lipids, together with a large-scale transcriptome study. We also determined that prevention of superficial scald, through the use of an ethylene action inhibitor, is associated with the triggering of cold acclimation-related processes. Specifically, the inhibition of ethylene perception stimulated the production of antioxidant compounds to scavenge reactive oxygen species, the synthesis of fatty acids to stabilize plastid and vacuole membranes against cold temperature, and the accumulation of the sorbitol, which can act as a cryoprotectant. The pattern of sorbitol accumulation was consistent with the expression profile of a sorbitol 6-phosphate dehydrogenase, MdS6PDH, the overexpression of which in transgenic Arabidopsis thaliana plants confirmed its involvement in the cold acclimation and freezing tolerance.


Assuntos
Ciclopropanos/metabolismo , Etilenos/antagonistas & inibidores , Malus/fisiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Transcriptoma , Aclimatação , Temperatura Baixa , Resistência à Doença , Etilenos/metabolismo , Frutas/genética , Frutas/imunologia , Frutas/metabolismo , L-Iditol 2-Desidrogenase/genética , Malus/genética , Malus/imunologia , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Metabolismo Secundário , Análise de Sequência de RNA , Sorbitol/metabolismo
4.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791398

RESUMO

Kiwifruit (Actinidia deliciosa cv. Hayward) is a commercially important crop with highly nutritional green fleshy fruits. The post-harvest maturation of the fruits is well characterized, but little is known about the metabolic changes that occur during fruit development. Here we used untargeted metabolomics to characterize the non-volatile metabolite profile of kiwifruits collected at different time points after anthesis, revealing profound metabolic changes before the onset of ripening including the depletion of many classes of phenolic compounds. In contrast, the phytohormone abscisic acid accumulated during development and ripening, along with two indolamines (serotonin and its precursor tryptamine), and these were monitored in greater detail by targeted metabolomics. The role of indolamines in kiwifruit development is completely unknown, so we also characterized the identity of genes encoding tryptophan decarboxylase in A. deliciosa and its close relative A. chinensis to provide insight into the corresponding biological processes. Our results indicate that abscisic acid and indolamines fulfill unrecognized functions in the development and ripening of kiwifruits.


Assuntos
Actinidia/metabolismo , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Metaboloma , Metabolômica , Desenvolvimento Vegetal , Actinidia/classificação , Actinidia/genética , Sequência de Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Cromatografia Líquida , Biologia Computacional/métodos , Frutas/metabolismo , Espectrometria de Massas , Metabolômica/métodos , Filogenia , Desenvolvimento Vegetal/genética , Serotonina/metabolismo , Triptaminas/metabolismo
5.
New Phytol ; 218(1): 283-297, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29292826

RESUMO

While cadmium (Cd) tolerance is a constitutive trait in the Arabidopsis halleri species, Cd accumulation is highly variable. Recent adaptation to anthropogenic metal stress has occurred independently within the genetic units of A. halleri and the evolution of different mechanisms involved in Cd tolerance and accumulation has been suggested. To gain a better understanding of the mechanisms underlying Cd tolerance and accumulation in A. halleri, ionomic inductively coupled plasma mass spectrometry (ICP-MS), transcriptomic (RNA sequencing) and metabolomic (high-performance liquid chromatography-mass spectrometry) profiles were analysed in two A. halleri metallicolous populations from different genetic units (PL22 from Poland and I16 from Italy). The PL22 and I16 populations were both hypertolerant to Cd, but PL22 hyperaccumulated Cd while I16 behaved as an excluder both in situ and when grown hydroponically. The observed hyperaccumulator vs excluder behaviours were paralleled by large differences in the expression profiles of transporter genes. Flavonoid-related transcripts and metabolites were strikingly more abundant in PL22 than in I16 shoots. The role of novel A. halleri candidate genes possibly involved in Cd hyperaccumulation or exclusion was supported by the study of corresponding A. thaliana knockout mutants. Taken together, our results are suggestive of the evolution of divergent strategies for Cd uptake, transport and detoxification in different genetic units of A. halleri.


Assuntos
Arabidopsis/fisiologia , Cádmio/toxicidade , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Metabolômica , Minerais/metabolismo , Modelos Biológicos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Análise de Componente Principal , Solo/química , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
6.
Plant Physiol ; 172(3): 1821-1843, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27670818

RESUMO

The molecular events that characterize postripening grapevine berries have rarely been investigated and are poorly defined. In particular, a detailed definition of changes occurring during the postharvest dehydration, a process undertaken to make some particularly special wine styles, would be of great interest for both winemakers and plant biologists. We report an exhaustive survey of transcriptomic and metabolomic responses in berries representing six grapevine genotypes subjected to postharvest dehydration under identical controlled conditions. The modulation of phenylpropanoid metabolism clearly distinguished the behavior of genotypes, with stilbene accumulation as the major metabolic event, although the transient accumulation/depletion of anthocyanins and flavonols was the prevalent variation in genotypes that do not accumulate stilbenes. The modulation of genes related to phenylpropanoid/stilbene metabolism highlighted the distinct metabolomic plasticity of genotypes, allowing for the identification of candidate structural and regulatory genes. In addition to genotype-specific responses, a core set of genes was consistently modulated in all genotypes, representing the common features of berries undergoing dehydration and/or commencing senescence. This included genes controlling ethylene and auxin metabolism as well as genes involved in oxidative and osmotic stress, defense responses, anaerobic respiration, and cell wall and carbohydrate metabolism. Several transcription factors were identified that may control these shared processes in the postharvest berry. Changes representing both common and genotype-specific responses to postharvest conditions shed light on the cellular processes taking place in harvested berries stored under dehydrating conditions for several months.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Vitis/crescimento & desenvolvimento , Vitis/genética , Dessecação , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Metaboloma/genética , Metabolômica , Análise de Componente Principal , Propanóis/metabolismo , Estilbenos/metabolismo , Transcriptoma/genética
7.
Rapid Commun Mass Spectrom ; 31(3): 292-300, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27935129

RESUMO

RATIONALE: Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are both used to generate ions for the analysis of metabolites by liquid chromatography/mass spectrometry (LC/MS). We compared the performance of these methods for the analysis of Corvina grapevine berry methanolic extracts, which are complex mixtures of diverse metabolites. METHODS: Corvina berries representing three ripening stages (veraison, early-ripening and full-ripening) were collected during two growing seasons, powdered and extracted with methanol. Untargeted metabolomic analysis was carried out by LC/ESI-MS and LC/APCI-MS. Processed data files were assembled into a data matrix for multivariate statistical analysis. The limits of detection (LODs), limits of quantification (LOQs), linear ranges, and matrix effects were investigated for strongly polar metabolites such as sucrose and tartaric acid and for moderately polar metabolites such as caftaric acid, epicatechin and quercetin 3-O-glucoside. RESULTS: Multivariate statistical analysis of the 608 features revealed that APCI was particularly suitable for the ionization of strongly polar metabolites such as sugars and organic acids, whereas ESI was more suitable for moderately polar metabolites such as flavanols, flavones and both glycosylated and acylated anthocyanins. APCI generated more fragment ions whereas ESI generated more adducts. ESI achieved lower LODs and LOQs for sucrose and tartaric acid but featured narrower linear ranges and greater matrix effects. CONCLUSIONS: ESI and APCI are not complementary ion sources. Indeed, ESI can be exploited to analyze moderately polar metabolites, whereas APCI can be used to investigate weakly polar/non-polar metabolites and, as demonstrated by our results, also strongly polar metabolites. ESI and APCI can be used in parallel, exploiting their strengths to cover the plant metabolome more broadly than either method alone. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida/métodos , Frutas/química , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Vitis/química , Flavonoides/análise , Frutas/metabolismo , Limite de Detecção , Modelos Lineares , Metaboloma , Análise Multivariada , Análise de Componente Principal , Reprodutibilidade dos Testes , Açúcares/análise , Vitis/metabolismo
8.
Plant Physiol ; 167(4): 1448-70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659381

RESUMO

Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of transcriptional activators.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Propanóis/metabolismo , Vitis/genética , Motivos de Aminoácidos , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação para Baixo , Flores/genética , Flores/metabolismo , Genótipo , Dados de Sequência Molecular , Petunia/genética , Petunia/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sementes/genética , Sementes/metabolismo , Análise de Sequência de DNA , Nicotiana/genética , Nicotiana/metabolismo , Vitis/metabolismo
9.
Plant Cell Physiol ; 56(6): 1193-204, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25809944

RESUMO

The activity of bc1 complex kinase (ABC1K) family is a large group of atypical protein kinases found in prokaryotes and eukaryotes. In bacteria and mitochondria, ABC1K kinases are necessary for the synthesis of coenzyme Q and are therefore involved in the respiratory pathway. In chloroplasts, they are involved in prenylquinone synthesis and stress responses, but their functional role remains unclear. Plants can respond to biotic and abiotic stress by modifying membrane fluidity in order to create a suitable environment for the activity of integral membrane proteins. Therefore, this work was focused on the analysis of the effect of ABC1K7 and ABC1K8 on the production of polar lipids and their accumulation in Arabidopsis thaliana leaves. A comparison of abc1k7 and abc1k8 single mutants and the abc1k7/abc1k8 double mutant with wild-type plants and transgenic lines overexpressing ABC1K7 and ABC1K8 was performed using untargeted lipidomic analysis based on liquid chromatography coupled to mass spectrometry. Multivariate data analysis identified sets of chloroplast lipids representing the different genotypes. The abc1k7 and abc1k8 single mutants produced lower levels of the highly unsaturated lipid digalactosyldiacylglycerol (DGDG) than wild-type plants and also different forms of monogalactosyldiacylglycerol (MGDG) and kaempferol. The abc1k8 mutant also produced higher levels of oxylipin-conjugated DGDG and sinapates. The double mutant produced even higher levels of oxylipin-conjugated MGDG and DGDG. These results show that ABC1K7 and ABC1K8 influence chloroplast lipid synthesis or accumulation and modulate chloroplast membrane composition in response to stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biomarcadores/metabolismo , Cromatografia Líquida , Análise Discriminante , Regulação da Expressão Gênica de Plantas , Análise dos Mínimos Quadrados , Metabolismo dos Lipídeos/genética , Espectrometria de Massas , Metaboloma , Metabolômica , Mutação/genética , Folhas de Planta/metabolismo , Análise de Componente Principal , Proteínas Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/genética
10.
BMC Plant Biol ; 15: 191, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26245744

RESUMO

BACKGROUND: The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. RESULTS: To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. CONCLUSIONS: Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.


Assuntos
Interação Gene-Ambiente , Metaboloma , Proteínas de Plantas/genética , Vitis/genética , Frutas/genética , Frutas/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análise de Sequência de Proteína , Vitis/metabolismo
11.
Plant Cell Physiol ; 55(3): 517-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24363289

RESUMO

Flavonoids play a key role in grapevine physiology and also contribute substantially to the quality of berries and wines. VvMYB5a and VvMYB5b are R2R3-MYB transcription factors previously proposed to control the spatiotemporal expression of flavonoid structural genes during berry development. We investigated the functions of these two proteins in detail by heterologous expression in a petunia an2 mutant, which has negligible anthocyanin levels in the petals because it lacks the MYB protein PhAN2. We also expressed VvMYBA1, the grapevine ortholog of petunia PhAN2, in the same genetic background. The anthocyanin profiles induced by expressing these transgenes in the petals revealed that VvMYBA1 is the functional ortholog of PhAN2 and that, unlike VvMYB5a, VvMYB5b can partially complement the an2 mutation. Transcriptomic analysis of petals by microarray hybridization and quantitative PCR confirmed that VvMYB5b up-regulates a subset of anthocyanin structural genes, whereas VvMYB5a has a more limited impact on the expression of genes related to anthocyanin biosynthesis. Furthermore, we identified additional specific and common targets of these two regulators, related to vacuolar acidification and membrane remodeling. Taken together, these data provide insight into the role of VvMYB5a and VvMYB5b in flavonoid biosynthesis and provide evidence for additional regulatory roles in distinct pathways.


Assuntos
Antocianinas/metabolismo , Petunia/metabolismo , Vitis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Petunia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/genética
12.
Curr Genet ; 60(4): 285-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24981976

RESUMO

The aim of this study was to investigate the impact of different 4 °C post-harvest storage periods on the quality of the white truffle Tuber magnatum. The expression of selected genes and the profiles of non-volatile metabolites have been analyzed. The up-regulation of genes related to cell wall metabolism and to a putative laccase points to cell wall modifications and browning events during cold storage. Time course RT-qPCR experiments have demonstrated that such transcription events probably depend on the ripening status, since this is delayed in partially ripe fruiting bodies. Changes in the concentrations of linoleate-derived metabolites occur during the first 3 days of considered cold storage, while the other metabolites, such as the amino acids, do not change. Taken together, the results demonstrate that complex molecular events occur in white truffles in the post-harvest period and before they are used as fresh products.


Assuntos
Ascomicetos/genética , Carpóforos/genética , Regulação Fúngica da Expressão Gênica , Ascomicetos/metabolismo , Parede Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Temperatura Baixa , Primers do DNA/genética , DNA Complementar/genética , Carpóforos/metabolismo , Metabolômica , Análise Multivariada , RNA Fúngico/genética , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas por Ionização por Electrospray , Regulação para Cima
13.
Sci Rep ; 14(1): 4791, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413638

RESUMO

Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.


Assuntos
Artemisia , Artemisininas , Sesquiterpenos , Artemisia/química , Bioprospecção , Artemisininas/metabolismo , Sesquiterpenos/metabolismo
14.
Mol Biol Evol ; 29(1): 409-19, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21972256

RESUMO

Botanical fruits derive from ovaries and their most important function is to favor seed dispersal. Fleshy fruits do so by attracting frugivorous animals that disperse seeds together with their own excrements (endozoochory). Gymnosperms make seeds but have no ovaries to be transformed into fruits. Many species surround their seeds with fleshy structures and use endozoochory to disperse them. Such structures are functionally fruits and can derive from different anatomical parts. Ginkgo biloba and Taxus baccata fruit-like structures differ in their anatomical origin since the outer seed integument becomes fleshy in Ginkgo, whereas in Taxus, the fleshy aril is formed de novo. The ripening characteristics are different, with Ginkgo more rudimentary and Taxus more similar to angiosperm fruits. MADS-box genes are known to be necessary for the formation of flowers and fruits in Angiosperms but also for making both male and female reproductive structures in Gymnosperms. Here, a series of different MADS-box genes have been shown for the first time to be involved also in the formation of gymnosperm fruit-like structures. Apparently, the same gene types have been recruited in phylogenetically distant species to make fleshy structures that also have different anatomical origins. This finding indicates that the main molecular networks operating in the development of fleshy fruits have independently appeared in distantly related Gymnosperm taxa. Hence, the appearance of the seed habit and the accompanying necessity of seed dispersal has led to the invention of the fruit habit that thus seems to have appeared independently of the presence of flowers.


Assuntos
Frutas/genética , Ginkgo biloba/genética , Proteínas de Domínio MADS/genética , Taxus/genética , Evolução Molecular , Frutas/metabolismo , Perfilação da Expressão Gênica , Ginkgo biloba/metabolismo , Proteínas de Domínio MADS/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Taxus/metabolismo
15.
J Exp Bot ; 64(12): 3775-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23888065

RESUMO

Strawberries (Fragaria×ananassa) are false fruits the ripening of which follows the non-climacteric pathway. The role played by a C-type MADS-box gene [SHATTERPROOF-like (FaSHP)] in the ripening of strawberries has been studied by transiently modifying gene expression through either over-expression or RNA-interference-mediated down-regulation. The altered expression of the FaSHP gene caused a change in the time taken by the over-expressing and the down- regulated fruits to attain the pink stage, which was slightly shorter and much longer, respectively, compared to controls. In parallel with the modified ripening times, the metabolome components and the expression of ripening-related genes also appeared different in the transiently modified fruits. Differences in the response time of the analysed genes suggest that FaSHP can control the expression of ripening genes either directly or indirectly through other transcription factor-encoding genes. Because fleshy strawberries are false fruits these results indicate that C-type MADS-box genes like SHATTERPROOF may act as modulators of ripening in fleshy fruit-like structures independently of their anatomical origin. Treatment of strawberries with either auxin or abscisic acid had antagonistic impacts on both the expression of FaSHP and the expression of ripening-related genes and metabolome components.


Assuntos
Fragaria/crescimento & desenvolvimento , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Fragaria/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
16.
Ann Bot ; 112(3): 535-44, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761686

RESUMO

BACKGROUND AND AIMS: The evolution of seeds together with the mechanisms related to their dispersal into the environment represented a turning point in the evolution of plants. Seeds are produced by gymnosperms and angiosperms but only the latter have an ovary to be transformed into a fruit. Yet some gymnosperms produce fleshy structures attractive to animals, thus behaving like fruits from a functional point of view. The aim of this work is to increase our knowledge of possible mechanisms common to the development of both gymnosperm and angiosperm fruits. METHODS: B-sister genes from two gymnosperms (Ginkgo biloba and Taxus baccata) were isolated and studied. The Ginkgo gene was also functionally characterized by ectopically expressing it in tobacco. KEY RESULTS: In Ginkgo the fleshy structure derives from the outer seed integument and the B-sister gene is involved in its growth. In Taxus the fleshy structure is formed de novo as an outgrowth of the ovule peduncle, and the B-sister gene is not involved in this growth. In transgenic tobacco the Ginkgo gene has a positive role in tissue growth and confirms its importance in ovule/seed development. CONCLUSIONS: This study suggests that B-sister genes have a main function in ovule/seed development and a subsidiary role in the formation of fleshy fruit-like structures when the latter have an ovular origin, as occurs in Ginkgo. Thus, the 'fruit function' of B-sister genes is quite old, already being present in Gymnosperms as ancient as Ginkgoales, and is also present in Angiosperms where a B-sister gene has been shown to be involved in the formation of the Arabidopsis fruit.


Assuntos
Genes de Plantas , Ginkgo biloba/genética , Óvulo Vegetal/genética , Sementes/genética , Taxus/genética , Óvulo Vegetal/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Dispersão de Sementes , Sementes/crescimento & desenvolvimento , Nicotiana/genética
17.
Plants (Basel) ; 12(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771739

RESUMO

Plants are valuable sources of secondary metabolites with pharmaceutical properties, but only a small proportion of plant life has been actively exploited for medicinal purposes to date. Underexplored plant species are therefore likely to contain novel bioactive compounds. In this study, we investigated the content of secondary metabolites in the flowers, leaves and pseudobulbs of the orchid Oncidium sotoanum using an untargeted metabolomics approach. We observed the strong accumulation of C-diglycosylated chrysin derivatives, which are rarely found in nature. Further characterization revealed evidence of antioxidant activity (FRAP and DPPH assays) and potential activity against neurodegenerative disorders (MAO-B inhibition assay) depending on the specific molecular structure of the metabolites. Natural product bioprospecting in underexplored plant species based on untargeted metabolomics can therefore help to identify novel chemical structures with diverse pharmaceutical properties.

18.
Plant J ; 68(1): 11-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21623977

RESUMO

Petunia is an excellent model system, especially for genetic, physiological and molecular studies. Thus far, however, genome-wide expression analysis has been applied rarely because of the lack of sequence information. We applied next-generation sequencing to generate, through de novo read assembly, a large catalogue of transcripts for Petunia axillaris and Petunia inflata. On the basis of both transcriptomes, comprehensive microarray chips for gene expression analysis were established and used for the analysis of global- and organ-specific gene expression in Petunia axillaris and Petunia inflata and to explore the molecular basis of the seed coat defects in a Petunia hybrida mutant, anthocyanin 11 (an11), lacking a WD40-repeat (WDR) transcription regulator. Among the transcripts differentially expressed in an11 seeds compared with wild type, many expected targets of AN11 were found but also several interesting new candidates that might play a role in morphogenesis of the seed coat. Our results validate the combination of next-generation sequencing with microarray analyses strategies to identify the transcriptome of two petunia species without previous knowledge of their genome, and to develop comprehensive chips as useful tools for the analysis of gene expression in P. axillaris, P. inflata and P. hybrida.


Assuntos
Petunia/genética , Proteínas de Plantas/genética , Proantocianidinas/biossíntese , Transcriptoma , Sequência de Bases , Sequência Consenso , Regulação para Baixo/genética , Flores/citologia , Flores/genética , Flores/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Petunia/química , Petunia/citologia , Petunia/fisiologia , Extratos Vegetais/química , Proteínas de Plantas/metabolismo , Proantocianidinas/análise , RNA de Plantas/genética , Plântula/citologia , Plântula/genética , Plântula/fisiologia , Sementes/química , Sementes/citologia , Sementes/genética , Sementes/fisiologia , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
19.
Plant Cell Rep ; 31(2): 361-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22009052

RESUMO

Echinacea angustifolia cell suspension cultures are usually grown and maintained in the dark, but we also exposed cells to light for one culture cycle (14 days) and then compared the metabolomes of dark-grown and illuminated cells by liquid chromatography-mass spectrometry. Among 256 signals, we putatively identified 159 molecules corresponding to 56 different metabolites plus their fragments, adducts and isotopologs. The E. angustifolia metabolome consisted mainly of caffeic acid derivatives, comprising (a) caffeic acid conjugated with tartaric, quinic and hexaric acids; and (b) caffeic acid conjugated with hydroxytyrosol glycosides (e.g., echinacoside, verbascoside and related molecules). Many of these metabolites have not been previously described in E. angustifolia, which currently lacks detailed metabolic profiles. Exposure to light significantly increased the levels of certain caffeic acid derivatives (particularly caffeoylquinic acids and hydroxytyrosol derivatives lacking rhamnose residues) and reduced the level of hydroxytyrosol derivatives with rhamnose residues, revealing that light specifically inhibits the rhamnosylation of caffeoyl phenylethanoid glycosides. These results are significant because they suggest that the metabolic profile of cell cultures can be manipulated by controlling simple environmental variables such as illumination to modulate the levels of potentially therapeutic compounds.


Assuntos
Echinacea/citologia , Echinacea/metabolismo , Luz , Metabolômica/métodos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Echinacea/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray
20.
Plants (Basel) ; 11(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161329

RESUMO

Diets rich in fruits and vegetables are associated with better psychological wellbeing and cognitive functions, although it is unclear which molecules and mechanisms are involved. One potential explanation is the inhibition of monoamine oxidases (MAOs), which have been linked to several neurological disorders. The present study investigated the ability of kiwifruit to inhibit MAO-A and MAO-B, refining an in vitro assay to avoid confounding effects. Ultra-performance liquid chromatography/mass spectrometry (UPLC-QTOF) and nuclear magnetic resonance spectroscopy (NMR) were used to select individual kiwifruit metabolites for further analysis. Moreover, extracts of other common fruits and vegetables were screened to identify promising candidate inhibitors. Multiple extracts and compounds inhibited both enzymes, and the selective inhibition of MAO-B by the major kiwifruit specialized metabolite D-(-)-quinic acid was observed. These results suggest that fruits and vegetables contain metabolites that inhibit the activity of MAO-A and -B, offering a potential natural option for the treatment of neurological disorders, in which MAOs are involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA