Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Genomics Hum Genet ; 23: 275-299, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35667089

RESUMO

Current estimates suggest that nearly half a billion people worldwide are affected by hearing loss. Because of the major psychological, social, economic, and health ramifications, considerable efforts have been invested in identifying the genes and molecular pathways involved in hearing loss, whether genetic or environmental, to promote prevention, improve rehabilitation, and develop therapeutics. Genomic sequencing technologies have led to the discovery of genes associated with hearing loss. Studies of the transcriptome and epigenome of the inner ear have characterized key regulators and pathways involved in the development of the inner ear and have paved the way for their use in regenerative medicine. In parallel, the immense preclinical success of using viral vectors for gene delivery in animal models of hearing loss has motivated the industry to work on translating such approaches into the clinic. Here, we review the recent advances in the genomics of auditory function and dysfunction, from patient diagnostics to epigenetics and gene therapy.


Assuntos
Surdez , Orelha Interna , Perda Auditiva , Animais , Surdez/metabolismo , Surdez/terapia , Orelha Interna/metabolismo , Terapia Genética , Genômica , Perda Auditiva/genética , Perda Auditiva/terapia , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38826689

RESUMO

Introduction: Mutations in microRNA-96 (miR-96), a microRNA expressed within the hair cells (HCs) of the inner ear, result in progressive hearing loss in both mouse models and humans. In this study, we present the first HC-specific RNA-sequencing (RNA-seq) dataset from newborn Mir96Dmdo heterozygous, homozygous mutant, and wildtype mice. Methods: Bulk RNA-seq was performed on HCs of newborn Mir96Dmdo heterozygous, homozygous mutant, and wildtype mice. Differentially expressed gene analysis was conducted on Mir96Dmdo homozygous mutant HCs compared to wildtype littermate controls, followed by GO term and protein-protein interaction analysis on these differentially expressed genes. Results: We identify 215 upregulated and 428 downregulated genes in the HCs of the Mir96Dmdo homozygous mutant mice compared to their wildtype littermate controls. Many of the significantly downregulated genes in Mir96Dmdo homozygous mutant HCs have established roles in HC development and/or known roles in deafness including Myo15a, Myo7a, Ush1c, Gfi1, and Ptprq and have enrichment in gene ontology (GO) terms with biological functions such as sensory perception of sound. Interestingly, upregulated genes in Mir96Dmdo homozygous mutants, including possible miR-96 direct targets, show higher wildtype expression in supporting cells compared to HCs. Conclusion: Our data further support a role for miR-96 in HC development, possibly as a repressor of supporting cell transcriptional programs in HCs. The HC-specific Mir96Dmdo RNA-seq data set generated from this manuscript are now publicly available in a dedicated profile in the gene expression analysis resource (gEAR-https://umgear.org/p?l=miR96).

3.
Laryngoscope ; 131 Suppl 5: S1-S16, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579737

RESUMO

OBJECTIVE: The cellular diversity of the inner ear has presented a technical challenge in obtaining molecular insight into its development and function. The application of technological advancements in cell type-specific expression enable clinicians and researchers to leap forward from classic genetics to obtaining mechanistic understanding of congenital and acquired hearing loss. This understanding is essential for development of therapeutics to prevent and reverse diseases of the inner ear, including hearing loss. The objective of this study is to describe and compare the available tools for cell type-specific analysis of the ear, as a means to support decision making in study design. STUDY DESIGN: Three major approaches for cell type-specific analysis of the ear including fluorescence-activated cell sorting (FACS), ribosomal and RNA pulldown techniques, and single cell RNA-seq (scRNA-seq) are compared and contrasted using both published and original data. RESULTS: We demonstrate the strength and weaknesses of these approaches leading to the inevitable conclusion that to maximize the utility of these approaches, it is important to match the experimental approach with the tissue of origin, cell type of interest, and the biological question. Often, a combined approach (eg, cell sorting and scRNA-seq or expression analysis using 2 separate approaches) is required. Finally, new tools for visualization and analysis of complex expression data, such as the gEAR platform (umgear.org), collate cell type-specific gene expression from the ear field and provide unprecedented access to both clinicians and researchers. LEVEL OF EVIDENCE: N/A Laryngoscope, 131:S1-S16, 2021.


Assuntos
Orelha Interna/citologia , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , RNA/isolamento & purificação , Análise de Sequência de RNA/métodos , Animais , Tomada de Decisões , Corantes Fluorescentes , Expressão Gênica , Perda Auditiva/congênito , Perda Auditiva/genética , Humanos , Camundongos , Camundongos Transgênicos , Órgão Espiral/citologia , Compostos de Piridínio , Compostos de Amônio Quaternário , Ribossomos/metabolismo , Análise de Célula Única/métodos , Junções Íntimas
4.
mBio ; 10(4)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409678

RESUMO

The mechanism(s) by which Lactobacillus-dominated cervicovaginal microbiota provide a barrier to Chlamydia trachomatis infection remain(s) unknown. Here we evaluate the impact of different Lactobacillus spp. identified via culture-independent metataxonomic analysis of C. trachomatis-infected women on C. trachomatis infection in a three-dimensional (3D) cervical epithelium model. Lactobacillus spp. that specifically produce d(-) lactic acid were associated with long-term protection against C. trachomatis infection, consistent with reduced protection associated with Lactobacillus iners, which does not produce this isoform, and with decreased epithelial cell proliferation, consistent with the observed prolonged protective effect. Transcriptomic analysis revealed that epigenetic modifications involving histone deacetylase-controlled pathways are integral to the cross talk between host and microbiota. These results highlight a fundamental mechanism whereby the cervicovaginal microbiota modulates host functions to protect against C. trachomatis infection.IMPORTANCE The vaginal microbiota is believed to protect women against Chlamydia trachomatis, the etiologic agent of the most prevalent sexually transmitted infection (STI) in developed countries. The mechanism underlying this protection has remained elusive. Here, we reveal the comprehensive strategy by which the cervicovaginal microbiota modulates host functions to protect against chlamydial infection, thereby providing a novel conceptual mechanistic understanding. Major implications of this work are that (i) the impact of the vaginal microbiota on the epithelium should be considered in future studies of chlamydial infection and other STIs and (ii) a fundamental understanding of the cervicovaginal microbiota's role in protection against STIs may enable the development of novel microbiome-based therapeutic strategies to protect women from infection and improve vaginal and cervical health.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/patogenicidade , Interações entre Hospedeiro e Microrganismos/fisiologia , Vagina/microbiologia , Movimento Celular , Proliferação de Células , Colo do Útero/microbiologia , Colo do Útero/patologia , Infecções por Chlamydia/prevenção & controle , Feminino , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/química , Ácido Láctico/metabolismo , Lactobacillus/classificação , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Microbiota , Estereoisomerismo , Transcriptoma , Vagina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA