Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant Cell Environ ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881245

RESUMO

This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.

2.
Ecol Lett ; 24(1): 60-72, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33047444

RESUMO

Extreme weather events have become a dominant feature of the narrative surrounding changes in global climate with large impacts on ecosystem stability, functioning and resilience; however, understanding of their risk of co-occurrence at the regional scale is lacking. Based on the UK Met Office's long-term temperature and rainfall records, we present the first evidence demonstrating significant increases in the magnitude, direction of change and spatial co-localisation of extreme weather events since 1961. Combining this new understanding with land-use data sets allowed us to assess the likely consequences on future agricultural production and conservation priority areas. All land-uses are impacted by the increasing risk of at least one extreme event and conservation areas were identified as the hotspots of risk for the co-occurrence of multiple event types. Our findings provide a basis to regionally guide land-use optimisation, land management practices and regulatory actions preserving ecosystem services against multiple climate threats.


Assuntos
Ecossistema , Tempo (Meteorologia) , Clima , Mudança Climática , Clima Extremo
3.
Environ Microbiol ; 18(6): 1942-53, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26259508

RESUMO

Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales < 100 m in any site or season. However, temporal changes were striking. Amplicon sequencing corroborated shifts from r- to K-selected taxon-dominated communities, influencing in silico predictions of functional potential. Network analyses reveal temporal keystone taxa, with a spring betaproteobacterial sub-network centred upon a Burkholderia operational taxonomic unit (OTU) and a reconfiguration to a summer sub-network centred upon an alphaproteobacterial OTU. Although spatial structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa.


Assuntos
Bactérias/classificação , Microbiologia do Solo , Alphaproteobacteria/isolamento & purificação , Regiões Árticas , Bactérias/genética , Bactérias/isolamento & purificação , Betaproteobacteria/isolamento & purificação , Carbono/análise , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Estações do Ano , Solo/química
4.
J Exp Bot ; 64(8): 2193-204, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23580749

RESUMO

Few studies to date have considered the responses of agriculturally important forage grasses to UV-B radiation. Yet grasses such as Lolium perenne have a wide current distribution, representing exposure to a significant variation in ambient UV-B. The current study investigated the responses of L. perenne (cv. AberDart) to a simulated latitudinal gradient of UV-B exposure, representing biologically effective UV-B doses at simulated 70, 60, 50, 40, and 30° N latitudes. Aspects of growth, soluble compounds, and digestibility were assessed, and results are discussed in relation to UV-B effects on forage properties and the implications for livestock and bio-ethanol production. Aboveground biomass production was reduced by approximately 12.67% with every 1 kJ m(-2) day(-1) increase in biologically weighted UV-B. As a result, plants grown in the highest UV-B treatment had a total biomass of just 13.7% of controls. Total flavonoids were increased by approximately 76% by all UV-B treatments, while hydroxycinnamic acids increased in proportion to the UV-B dose. Conversely, the digestibility of the aboveground biomass and concentrations of soluble fructans were reduced by UV-B exposure, although soluble sucrose, glucose, and fructose concentrations were unaffected. These results highlight the capacity for UV-B to directly affect forage productivity and chemistry, with negative consequences for digestibility and bioethanol production. Results emphasize the need for future development and distribution of L. perenne varieties to take UV-B irradiance into consideration.


Assuntos
Lolium/efeitos da radiação , Raios Ultravioleta , Animais , Biocombustíveis , Biomassa , Bovinos , Ácidos Cumáricos/análise , Digestão , Relação Dose-Resposta à Radiação , Flavonoides/análise , Frutose/análise , Geografia , Glucose/análise , Lolium/química , Lolium/crescimento & desenvolvimento , Sacarose/análise
5.
Sci Total Environ ; 879: 163063, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966833

RESUMO

In low-lying land, the impact of agriculture on flooding has focussed on soil compaction, whilst in the uplands there has been more interest in the influence of afforestation. The potential effect of acidification of previously limed upland grassland soils on this risk has been overlooked. The marginal economics of upland farms has led to inadequate lime application on these grasslands. In Wales, UK, agronomic improvement of upland acid grasslands with liming was widespread in the last century. The extent and topographical distribution of this land use in Wales was estimated and these characteristics were mapped in four catchments studied in more detail. Then 41 sites on improved pastures within the catchments were sampled, where lime had not been applied for periods of between two and 30 years; unimproved acid pastures adjacent to five of these sites were also sampled. Soil pH, organic matter, infiltration rates and earthworm populations were recorded. Grasslands at risk of acidification without maintenance liming were estimated to cover almost 20 % of upland Wales. The majority of these grasslands were located on steeper slopes (gradients >7o) where any reduction in infiltration would promote surface runoff and limit rainwater retention. The extent of these pastures varied markedly between the four study catchments. There was a 6-fold reduction in infiltration rates between high and low pH soils, and this trend was correlated with reductions in anecic earthworm abundance. The vertical burrows of these earthworms are important for infiltration and no such earthworms were present in the most acidic soils. Recently limed soils had infiltration rates similar to those of unimproved acid pastures. Soil acidification has the potential to exacerbate flood risk but further research is needed to assess the extent of any impact. Modelling of catchment specific flood risk should include the extent of upland soil acidification as an additional land use factor.


Assuntos
Inundações , Oligoquetos , Animais , Agricultura , Solo , Concentração de Íons de Hidrogênio
6.
Sci Total Environ ; 861: 160660, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36464051

RESUMO

Extreme weather events are increasing in frequency and magnitude with profound effects on ecosystem functioning. Further, there is now a greater likelihood that multiple extreme events are occurring within a single year. Here we investigated the effect of a single drought, flood or compound (flood + drought) extreme event on temperate grassland ecosystem processes in a field experiment. To assess system resistance and resilience, we studied changes in a wide range of above- and below-ground indicators (plant diversity and productivity, greenhouse gas emissions, soil chemical, physical and biological metrics) during the 8 week stress events and then for 2 years post-stress. We hypothesized that agricultural grasslands would have different degrees of resistance and resilience to flood and drought stress. We also investigated two alternative hypotheses that the combined flood + drought treatment would either, (A) promote ecosystem resilience through more rapid recovery of soil moisture conditions or (B) exacerbate the impact of the single flood or drought event. Our results showed that flooding had a much greater effect than drought on ecosystem processes and that the grassland was more resistant and resilient to drought than to flood. The immediate impact of flooding on all indicators was negative, especially for those related to production, and climate and water regulation. Flooding stress caused pronounced and persistent shifts in soil microbial and plant communities with large implications for nutrient cycling and long-term ecosystem function. The compound flood + drought treatment failed to show a more severe impact than the single extreme events. Rather, there was an indication of quicker recovery of soil and microbial parameters suggesting greater resilience in line with hypothesis (A). This study clearly reveals that contrasting extreme weather events differentially affect grassland ecosystem function but that concurrent events of a contrasting nature may promote ecosystem resilience to future stress.


Assuntos
Ecossistema , Clima Extremo , Pradaria , Plantas , Solo/química , Secas
7.
Physiol Plant ; 145(4): 619-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22324819

RESUMO

UV-B radiation and elevated CO2 may impact rhizosphere processes through altered below-ground plant resource allocation and root exudation, changes that may have implications for nutrient acquisition. As nutrients limit plant growth in many habitats, their supply may dictate plant response under elevated CO2. This study investigated UV-B exposure and elevated CO2 effects, including interactions, on plant growth, tissue chemistry and rooting responses relating to P acquisition. The sub-arctic grass Calamagrostis purpurea was subjected to UV-B (0 or 3.04 kJ m⁻² day⁻¹) and CO2 (ambient 380 or 650 ppmv) treatments in a factorial glasshouse experiment, with sparingly soluble P (0 or 0.152 mg P per plant as FePO4) a further factor. It was hypothesized that UV-B exposure and elevated CO2would change plant resource allocation, with CO2 mitigating adverse responses to UV-B exposure and aiding P uptake. Plant biomass and morphology, tissue composition and rhizosphere leachate properties were measured. UV-B directly affected chemical composition of shoots and interacted with CO2 to give a greater root biomass. Elevated CO2 altered the composition of both shoots and roots and increased shoot biomass and secondary root length, while leachate pH decreased. Below-ground responses to CO2 did not affect P acquisition although P limitation progressively reduced leachate pH and increased secondary root length. Although direct plant growth, foliar composition and below-ground nutrient acquisition responses were dominated by CO2 treatments, UV-B modified these CO2 responses significantly. These interactions have implications for plant responses to future atmospheric conditions.


Assuntos
Dióxido de Carbono/metabolismo , Fósforo/metabolismo , Poaceae/efeitos da radiação , Raios Ultravioleta , Biomassa , Poaceae/metabolismo , Poaceae/fisiologia
8.
Physiol Plant ; 145(4): 604-18, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22304366

RESUMO

Lolium perenne (cv. AberDart) was grown at 14 locations along a latitudinal gradient across Europe (37-68°N) to study the impact of ultraviolet radiation (UV) and climate on aboveground growth and foliar UV-B absorbing compounds. At each location, plants were grown outdoors for 5 weeks in a replicated UV-B filtration experiment consisting of open, UV-B transparent (cellulose diacetate) and UV-B opaque (polyester) environments. Fourier transform-infrared spectroscopy was used to compare plant metabolite profiles in relation to treatment and location. UV radiation and climatic parameters were determined for each location from online sources and the data were assessed using a combination of anova and multiple regression analyses. Most of the variation in growth between the locations was attributable to the combination of climatic parameters, with minimum temperature identified as an important growth constraint. However, no single environmental parameter could consistently account for the variability in plant growth. Concentrations of foliar UV-B absorbing compounds showed a positive trend with solar UV across the latitudinal gradient; however, this relationship was not consistent in all treatments. The most striking experimental outcome from this study was the effect of presence or absence of filtration frames on UV-absorbing compounds. Overall, the study demonstrates the value of an European approach in studying the impacts of natural UV across a large latitudinal gradient. We have shown the feasibility of coordinated UV filtration at multiple sites but have also highlighted the need for open controls and careful interpretation of plant responses.


Assuntos
Lolium/efeitos da radiação , Raios Ultravioleta , Clima , Europa (Continente) , Lolium/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento
9.
Ambio ; 41 Suppl 3: 256-68, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22864699

RESUMO

This study investigated the effects of long-term-enhanced UV-B, and combined UV-B with elevated CO(2) on dwarf shrub berry characteristics in a sub-arctic heath community. Germination of Vaccinium myrtillus was enhanced in seeds produced at elevated UV-B, but seed numbers and berry size were unaffected. Elevated UV-B and CO(2) stimulated the abundance of V. myrtillus berries, whilst UV-B alone stimulated the berry abundance of V. vitis-idaea and Empetrum hermaphroditum. Enhanced UV-B reduced concentrations of several polyphenolics in V. myrtillus berries, whilst elevated CO(2) increased quercetin glycosides in V. myrtillus, and syringetin glycosides and anthocyanins in E. hermaphroditum berries. UV-B × CO(2) interactions were found for total anthocyanins, delphinidin-3-hexoside and peonidin-3-pentosidein in V. myrtillus berries but not E. hermaphroditum. Results suggest positive impacts of UV-B on the germination of V. myrtillus and species-specific impacts of UV-B × elevated CO(2) on berry abundance and quality. The findings have relevance and implications for human and animal consumers plus seed dispersal and seedling establishment.


Assuntos
Dióxido de Carbono/farmacologia , Ecossistema , Frutas/efeitos dos fármacos , Sementes/efeitos dos fármacos , Raios Ultravioleta , Vaccinium/efeitos dos fármacos , Regiões Árticas , Mudança Climática , Germinação/efeitos dos fármacos , Germinação/fisiologia , Sementes/fisiologia , Suécia , Vaccinium/fisiologia
10.
Sci Rep ; 9(1): 2239, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783123

RESUMO

Rhododendron ponticum L. is a damaging invasive alien species in Britain, favouring the moist, temperate climate, and the acidic soils of upland areas. It outshades other species and is thought to create a soil environment of low pH that may be higher in phytotoxic phenolic compounds. We investigated native vegetation restoration and R. ponticum regeneration post-clearance using heathland sites within Snowdonia National Park, Wales; one site had existing R. ponticum stands and three were restoring post-clearance. Each site also had an adjacent, uninvaded control for comparison. We assessed whether native vegetation restoration was influenced post-invasion by soil chemical properties, including pH and phytotoxic compounds, using Lactuca sativa L. (lettuce) bioassays supported by liquid chromatography-mass spectroscopy (LC-MSn). Cleared sites had higher shrub and bare ground cover, and lower grass and herbaceous species cover relative to adjacent uninvaded control sites; regenerating R. ponticum was also observed on all cleared sites. No phenolic compounds associated with R. ponticum were identified in any soil water leachates, and soil leachates from cleared sites had no inhibitory effect in L. sativa germination assays. We therefore conclude that reportedly phytotoxic compounds do not influence restoration post R. ponticum clearance. Soil pH however was lower beneath R. ponticum and on cleared sites, relative to adjacent uninvaded sites. The lower soil pH post-clearance may have favoured shrub species, which are typically tolerant of acidic soils. The higher shrub cover on cleared sites may have greater ecological value than unaffected grass dominated sites, particularly given the recent decline in such valuable heathland habitats. The presence of regenerating R. ponticum on all cleared sites however highlights the critical importance of monitoring and re-treating sites post initial clearance.


Assuntos
Pradaria , Espécies Introduzidas , Lactuca/metabolismo , Rhododendron/metabolismo , Conservação dos Recursos Naturais
11.
Ecol Lett ; 10(7): 619-27, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17542940

RESUMO

Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.


Assuntos
Clima Frio , Ecossistema , Efeito Estufa , Modelos Biológicos , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Análise de Variância , Carbono/química , Plantas/metabolismo , Especificidade da Espécie , Suécia
12.
Phytochemistry ; 63(6): 705-10, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12842144

RESUMO

New analytical developments in post-genomic technologies are being introduced to the field of plant ecology. FT-IR fingerprinting coupled with chemometrics via cluster analysis is proposed as a tool for correlating global metabolic changes with abiotic or biotic perturbation and/or interactions. The current study concentrates on detecting chemical responses by inter-species competition between a monocotyledon Brachypodium distachyion and a dicotyledon Arabidopsis thaliana. Growth analysis of 42 days old plants showed differences in both species under competition. Clear changes in the FT-IR metabolic fingerprints of B. distachyion in competition with A. thaliana were observed, whilst there were no apparent chemical differences in the A. thaliana plant tissues. This study demonstrates the power of this approach in detecting changes in the global metabolic profiles of plants in response to biotic interactions, and we believe FT-IR is appropriate for rapid screening (10 s per sample) prior to targeted metabolite analyses.


Assuntos
Arabidopsis/metabolismo , Poaceae/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Arabidopsis/química , Comportamento Competitivo , Poaceae/química , Especificidade da Espécie
13.
J Photochem Photobiol B ; 138: 307-16, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25022465

RESUMO

Ultraviolet (UV) radiation directly regulates a multitude of herbivore life processes, in addition to indirectly affecting insect success via changes in plant chemistry and morphogenesis. Here we looked at plant and insect (aphid and whitefly) exposure to supplemental UV-A radiation in the glasshouse environment and investigated effects on insect population growth. Glasshouse grown peppers and eggplants were grown from seed inside cages covered by novel plastic filters, one transparent and the other opaque to UV-A radiation. At a 10-true leaf stage for peppers (53 days) and 4-true leaf stage for eggplants (34 days), plants were harvested for chemical analysis and infested by aphids and whiteflies, respectively. Clip-cages were used to introduce and monitor the insect fitness and populations of the pests studied. Insect pre-reproductive period, fecundity, fertility and intrinsic rate of natural increase were assessed. Crop growth was monitored weekly for 7 and 12 weeks throughout the crop cycle of peppers and eggplants, respectively. At the end of the insect fitness experiment, plants were harvested (68 days and 18-true leaf stage for peppers, and 104 days and 12-true leaf stage for eggplants) and leaves analysed for secondary metabolites, soluble carbohydrates, amino acids, total proteins and photosynthetic pigments. Our results demonstrate for the first time, that UV-A modulates plant chemistry with implications for insect pests. Both plant species responded directly to UV-A by producing shorter stems but this effect was only significant in pepper whilst UV-A did not affect the leaf area of either species. Importantly, in pepper, the UV-A treated plants contained higher contents of secondary metabolites, leaf soluble carbohydrates, free amino acids and total content of protein. Such changes in tissue chemistry may have indirectly promoted aphid performance. For eggplants, chlorophylls a and b, and carotenoid levels decreased with supplemental UV-A over the entire crop cycle but UV-A exposure did not affect leaf secondary metabolites. However, exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues as compounds implied in pest nutrition - proteins and sugars - were unaltered.


Assuntos
Afídeos/efeitos da radiação , Hemípteros/efeitos da radiação , Plantas/efeitos da radiação , Raios Ultravioleta , Aminoácidos/análise , Animais , Capsicum/metabolismo , Capsicum/parasitologia , Capsicum/efeitos da radiação , Carboidratos/análise , Cromatografia Líquida de Alta Pressão , Feminino , Fertilidade/efeitos da radiação , Espectrometria de Massas , Fenóis/análise , Fenóis/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/efeitos da radiação , Plantas/parasitologia , Proteínas/análise , Solanum melongena/metabolismo , Solanum melongena/parasitologia , Solanum melongena/efeitos da radiação , Fatores de Tempo
14.
Environ Int ; 73: 252-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25171551

RESUMO

We appraise the present geographical extent and inherent knowledge limits, following two decades of research on elevated CO2 responses in plant communities, and ask whether such research has answered the key question in quantifying the limits of compensatory CO2 uptake in the major biomes. Our synthesis of all ecosystem-scale (between 10 m(2) and 3000 m(2) total experimental plot area) elevated CO2 (eCO2) experiments in natural ecosystems conducted worldwide since 1987 (n=151) demonstrates that the locations of these eCO2 experiments have been spatially biased, targeting primarily the temperate ecosystems of northern America and Europe. We consider the consequences, suggesting fundamentally that this limits the capacity of the research to understand how the world's major plant communities will respond to eCO2. Most notably, our synthesis shows that this research lacks understanding of impacts on tropical forests and boreal regions, which are potentially the most significant biomes for C sink and storage activity, respectively. Using a meta-analysis of the available data across all biomes, we show equivocal increases in net primary productivity (NPP) from eCO2 studies, suggesting that global validation is needed, especially in the most important biomes for C processing. Further, our meta-analysis identifies that few research programs have addressed eCO2 effects on below-ground C storage, such that at the global scale, no overall responses are discernable. Given the disparity highlighted in the distribution of eCO2 experiments globally, we suggest opportunities for newly-industrialized or developing nations to become involved in further research, particularly as these countries host some of the most important regions for tropical or sub-tropical forest systems. Modeling approaches that thus far have attempted to understand the biological response to eCO2 are constrained with respect to collective predictions, suggesting that further work is needed, which will link models to in situ eCO2 experiments, in order to understand how the world's most important regions for terrestrial C uptake and storage will respond to a future eCO2 atmosphere.


Assuntos
Dióxido de Carbono/análise , Atmosfera/química , Ecossistema , Europa (Continente) , Modelos Teóricos , América do Norte , Plantas/metabolismo , Pesquisa
15.
Ecol Evol ; 3(4): 1016-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23610641

RESUMO

Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.

16.
Philos Trans R Soc Lond B Biol Sci ; 368(1624): 20120488, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23836792

RESUMO

The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Árticas , Atividades Humanas , Plantas , Dinâmica Populacional , Suécia , Temperatura , Raios Ultravioleta
17.
Ecol Evol ; 2(11): 2695-709, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23170206

RESUMO

Here, a factorial experiment was used to investigate the interactive effects of a UV-B episode and concurrent progressive drought on the growth, chemistry, and reproductive success of A. thaliana. Both drought and UV-B negatively affected rosette growth, although UV-B had the greater effect. Acclimation to UV-B involved adjustment of leaf morphology, while drought induced accumulation of soluble sugars and phenolics. All plants recovered from treatments, but the cost of recovery was a developmental delay resulting in alteration in phenological timings. Combined treatments interacted causing additive negative effects on growth following exposure. This may be linked with inhibition of soluble sugar accumulation by UV-B, restricting the capacity for osmotic adjustment in response to drought. Following cessation of treatments, relative growth rate (RGR) and net assimilation rate (NAR) were significantly stimulated in plants treated with combined drought and UV-B. This interaction alleviated subsequent impacts of elevated UV-B on silique yield and reproductive timings. This study demonstrates the potential for interaction between these two common environmental factors. Furthermore, it shows the changeable nature of these interactions over the course of exposure and recovery through to reproduction, highlighting the need for sustained assessment of such interactions over a plant's lifecycle.

19.
Nature ; 416(6876): 82-3, 2002 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-11882896

RESUMO

Surface ultraviolet-B radiation and atmospheric CO2 concentrations have increased as a result of ozone depletion and burning of fossil fuels. The effects are likely to be most apparent in polar regions where ozone holes have developed and ecosystems are particularly sensitive to disturbance. Polar plant communities are dependent on nutrient cycling by soil microorganisms, which represent a significant and highly labile portion of soil carbon (C) and nitrogen (N). It was thought that the soil microbial biomass was unlikely to be affected by exposure of their associated plant communities to increased UV-B. In contrast, increasing atmospheric CO2 concentrations were thought to have a strong effect as a result of greater below-ground C allocation. In addition, there is a growing belief that ozone depletion is of only minor environmental concern because the impacts of UV-B radiation on plant communities are often very subtle. Here we show that 5 years of exposure of a subarctic heath to enhanced UV-B radiation both alone and in combination with elevated CO2 resulted in significant changes in the C:N ratio and in the bacterial community structure of the soil microbial biomass.


Assuntos
Dióxido de Carbono/farmacologia , Plantas/metabolismo , Microbiologia do Solo , Raios Ultravioleta , Regiões Árticas , Biomassa , Bryopsida/metabolismo , Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Plantas/microbiologia
20.
Oecologia ; 133(1): 90-93, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24599373

RESUMO

Effects of enhanced UV-B (representing a 15% ozone depletion) on cyanobacterial nitrogen fixation were measured at a high arctic site (Adventdalen, 79°N, Svalbard) and a subarctic site (Abisko, 68°N, Sweden). Nitrogen fixation potential (acetylene reduction) by cyanobacteria associated with the moss Sanionia uncinata in vegetation exposed to experimentally enhanced levels of UV-B for 3 and 4 years in the high arctic in Adventdalen was reduced by 50% compared to controls after 3 years. No reduction in nitrogen fixation potential was observed in cyanobacteria associated with the moss Hylocomium splendens when previously exposed to enhanced UV-B in Abisko for a 7-year period. However, in the same experiment a 50% increase in summer precipitation stimulated nitrogen fixation potential by up to 6-fold above the natural precipitation treatments both in cyanobacteria associated with vegetation exposed to natural and enhanced UV-B radiation. In contrast to the lack of UV effect on moss-associated nitrogen fixation at the subarctic site, nitrogen fixation potential by the dominant lichen species Peltigera aphthosa was reduced by 50% when measured after 8 years exposure to elevated UV-B treatment. Evidence from these studies highlights the importance of UV-B radiation for cyanobacterial nitrogen fixation in the Arctic and future impact on nitrogen availability in such plant communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA