Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circ Res ; 134(7): 875-891, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38440901

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a connective tissue disease that can serve as a model to study vascular changes in response to inflammation, autoimmunity, and fibrotic remodeling. Although microvascular changes are the earliest histopathologic manifestation of SSc, the vascular pathophysiology remains poorly understood. METHODS: We applied spatial proteomic approaches to deconvolute the heterogeneity of vascular cells at the single-cell level in situ and characterize cellular alterations of the vascular niches of patients with SSc. Skin biopsies of patients with SSc and control individuals were analyzed by imaging mass cytometry, yielding a total of 90 755 cells including 2987 endothelial cells and 4096 immune cells. RESULTS: We identified 7 different subpopulations of blood vascular endothelial cells (VECs), 2 subpopulations of lymphatic endothelial cells, and 3 subpopulations of pericytes. A novel population of CD34+;αSMA+ (α-smooth muscle actin);CD31+ VECs was more common in SSc, whereas endothelial precursor cells were decreased. Co-detection by indexing and tyramide signal amplification confirmed these findings. The microenvironment of CD34+;αSMA+;CD31+ VECs was enriched for immune cells and myofibroblasts, and CD34+;αSMA+;CD31+ VECs expressed markers of endothelial-to-mesenchymal transition. The density of CD34+;αSMA+;CD31+ VECs was associated with clinical progression of fibrosis in SSc. CONCLUSIONS: Using spatial proteomics, we unraveled the heterogeneity of vascular cells in control individuals and patients with SSc. We identified CD34+;αSMA+;CD31+ VECs as a novel endothelial cell population that is increased in patients with SSc, expresses markers for endothelial-to-mesenchymal transition, and is located in close proximity to immune cells and myofibroblasts. CD34+;αSMA+;CD31+ VEC counts were associated with clinical outcomes of progressive fibrotic remodeling, thus providing a novel cellular correlate for the crosstalk of vasculopathy and fibrosis.


Assuntos
Células Progenitoras Endoteliais , Escleroderma Sistêmico , Humanos , Proteômica , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/patologia , Fibrose , Miofibroblastos/patologia
2.
Ann Rheum Dis ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594058

RESUMO

BACKGROUND: The interleukin (IL)-1 receptor accessory protein (IL1RAP) is an essential coreceptor required for signalling through the IL-1, IL-33 and IL-36 receptors. Here, we investigate the antifibrotic potential of the combined inhibition of these cytokines by an anti-IL1RAP antibody to provide a scientific background for clinical development in systemic sclerosis (SSc). METHODS: The expression of IL1RAP-associated signalling molecules was determined by data mining of publicly available RNA sequencing (RNAseq) data as well as by imaging mass cytometry. The efficacy of therapeutic dosing of anti-IL1RAP antibodies was determined in three complementary mouse models: sclerodermatous chronic graft-versus-host disease (cGvHD), bleomycin-induced dermal fibrosis model and topoisomerase-I (topo)-induced fibrosis. RESULTS: SSc skin showed upregulation of IL1RAP and IL1RAP-related signalling molecules on mRNA and protein level compared with normal skin. IL-1, IL-33 and IL-36 all regulate distinct gene sets related to different pathophysiological processes in SSc. The responses of human fibroblasts and endothelial cells to IL-1, IL-33 and IL-36 were completely blocked by treatment with an anti-IL1RAP antibody in vitro. Moreover, anti-IL1RAP antibody treatment reduced dermal and pulmonary fibrosis in cGvHD-induced, bleomycin-induced and topoisomerase-induced fibrosis. Importantly, RNAseq analyses revealed effects of IL1RAP inhibition on multiple processes related to inflammation and fibrosis that are also deregulated in human SSc skin. CONCLUSION: This study provides the first evidence for the therapeutic benefits of targeting IL1RAP in SSc. Our findings have high translational potential as the anti-IL1RAP antibody CAN10 has recently entered a phase one clinical trial.

3.
Z Rheumatol ; 83(6): 455-459, 2024 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-39031195

RESUMO

Fibroblast activation protein (FAP) is mainly found on the surface of activated fibroblasts but is not expressed on the surface of inactive fibroblasts. Selective FAP inhibitors (FAPI), which are coupled to a radioactive tracer, can be used to quantify profibrotic and proinflammatory fibroblasts in patients using FAPI positron emission tomography (PET) computed tomography (CT). Following initial applications in neoplastic diseases, FAPI-PET/CT is also increasingly being applied in rheumatological diseases. The first studies have shown that in patients with systemic sclerosis (SSc) FAPI accumulates in actively fibrotically remodeled pulmonary and myocardial areas, that a high FAPI accumulation is associated with the risk of short-term progression and that this accumulation in the lungs regresses after successful treatment. In cases of immunoglobulin 4 (IgG4)-associated diseases (IgG4 rheumatic disease, RD), the FAPI signal correlates with the histological accumulation of activated fibroblasts and a poorer response to treatment to inhibit inflammation. Fibroblasts in chronically inflamed tissue, such as patients with inflammatory joint diseases, vasculitis or myositis, also express FAP and can be quantified by FAPI-PET/CT. The treatment-induced change of the phenotype from a destructive IL-6+/MMP3+THY1+ fibroblast subtype to an inflammation inhibiting CD200+DKK3+ subtype can be mechanistically demonstrated using FAPI-PET/CT. These studies provide indications that FAPI-PET/CT enables quantification of the tissue response in patients with fibrosing and chronic inflammatory diseases and can be used for patient stratification; however, further studies are essential for validation of the use of FAPI-PET/CT as a molecular imaging marker.


Assuntos
Endopeptidases , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Doenças Reumáticas , Humanos , Doenças Reumáticas/diagnóstico por imagem , Proteínas de Membrana/metabolismo , Gelatinases/metabolismo , Serina Endopeptidases/metabolismo , Compostos Radiofarmacêuticos , Fibroblastos/patologia , Resultado do Tratamento , Sensibilidade e Especificidade
4.
Arthritis Rheumatol ; 76(5): 783-795, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38108109

RESUMO

OBJECTIVE: S100A4 is a DAMP protein. S100A4 is overexpressed in patients with systemic sclerosis (SSc), and levels correlate with organ involvement and disease activity. S100A4-/- mice are protected from fibrosis. The aim of this study was to assess the antifibrotic effects of anti-S100A4 monoclonal antibody (mAb) in murine models of SSc and in precision cut skin slices of patients with SSc. METHODS: The effects of anti-S100A4 mAbs were evaluated in a bleomycin-induced skin fibrosis model and in Tsk-1 mice with a therapeutic dosing regimen. In addition, the effects of anti-S100A4 mAbs on precision cut SSc skin slices were analyzed by RNA sequencing. RESULTS: Inhibition of S100A4 was effective in the treatment of pre-established bleomycin-induced skin fibrosis and in regression of pre-established fibrosis with reduced dermal thickening, myofibroblast counts, and collagen accumulation. Transcriptional profiling demonstrated targeting of multiple profibrotic and proinflammatory processes relevant to the pathogenesis of SSc on targeted S100A4 inhibition in a bleomycin-induced skin fibrosis model. Moreover, targeted S100A4 inhibition also modulated inflammation- and fibrosis-relevant gene sets in precision cut SSc skin slices in an ex vivo trial approach. Selected downstream targets of S100A4, such as AMP-activated protein kinase, calsequestrin-1, and phosphorylated STAT3, were validated on the protein level, and STAT3 inhibition was shown to prevent the profibrotic effects of S100A4 on fibroblasts in human skin. CONCLUSION: Inhibition of S100A4 confers dual targeting of inflammatory and fibrotic pathways in complementary mouse models of fibrosis and in SSc skin. These effects support the further development of anti-S100A4 mAbs as disease-modifying targeted therapies for SSc.


Assuntos
Anticorpos Monoclonais , Bleomicina , Modelos Animais de Doenças , Fibrose , Proteína A4 de Ligação a Cálcio da Família S100 , Escleroderma Sistêmico , Pele , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Animais , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Humanos , Camundongos , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Feminino
5.
Sci Transl Med ; 16(740): eadd6570, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536934

RESUMO

Fibrotic diseases impose a major socioeconomic challenge on modern societies and have limited treatment options. Adropin, a peptide hormone encoded by the energy homeostasis-associated (ENHO) gene, is implicated in metabolism and vascular homeostasis, but its role in the pathogenesis of fibrosis remains enigmatic. Here, we used machine learning approaches in combination with functional in vitro and in vivo experiments to characterize adropin as a potential regulator involved in fibroblast activation and tissue fibrosis in systemic sclerosis (SSc). We demonstrated consistent down-regulation of adropin/ENHO in skin across multiple cohorts of patients with SSc. The prototypical profibrotic cytokine TGFß reduced adropin/ENHO expression in a JNK-dependent manner. Restoration of adropin signaling by therapeutic application of bioactive adropin34-76 peptides in turn inhibited TGFß-induced fibroblast activation and fibrotic tissue remodeling in primary human dermal fibroblasts, three-dimensional full-thickness skin equivalents, mouse models of bleomycin-induced pulmonary fibrosis and sclerodermatous chronic graft-versus-host-disease (sclGvHD), and precision-cut human skin slices. Knockdown of GPR19, an adropin receptor, abrogated the antifibrotic effects of adropin in fibroblasts. RNA-seq demonstrated that the antifibrotic effects of adropin34-76 were functionally linked to deactivation of GLI1-dependent profibrotic transcriptional networks, which was experimentally confirmed in vitro, in vivo, and ex vivo using cultured human dermal fibroblasts, a sclGvHD mouse model, and precision-cut human skin slices. ChIP-seq confirmed adropin34-76-induced changes in TGFß/GLI1 signaling. Our study characterizes the TGFß-induced down-regulation of adropin/ENHO expression as a potential pathomechanism of SSc as a prototypical systemic fibrotic disease that unleashes uncontrolled activation of profibrotic GLI1 signaling.


Assuntos
Escleroderma Sistêmico , Camundongos , Animais , Humanos , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia , Fibrose , Escleroderma Sistêmico/metabolismo , Fibroblastos/patologia , Fator de Crescimento Transformador beta/metabolismo , Pele/patologia , Células Cultivadas , Modelos Animais de Doenças , Bleomicina/metabolismo , Bleomicina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neurotransmissores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
Lancet Rheumatol ; 3(3): e185-e194, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279381

RESUMO

BACKGROUND: Interstitial lung disease (ILD) is the most common cause of death in systemic sclerosis. To date, the progression of systemic sclerosis-associated ILD is judged by the accrual of lung damage on CT and pulmonary function tests. However, diagnostic tools to assess disease activity are not available. Here, we tested the hypothesis that quantification of fibroblast activation by PET-CT using a 68Ga-labelled selective inhibitor of prolyl endopeptidase FAP (68Ga-FAPI-04) would correlate with ILD activity and disease progression in patients with systemic sclerosis-associated ILD. METHODS: Between Sept 10, 2018, and April 8, 2020, 21 patients with systemic sclerosis-associated ILD confirmed by high-resolution CT (HRCT) within 12 months of inclusion and with onset of systemic sclerosis-associated ILD within 5 years or signs of progressive ILD and 21 controls without ILD were consecutively enrolled. All participants underwent 68Ga-FAPI-04 PET-CT imaging and standard-of-care procedures, including HRCT and pulmonary function tests at baseline. Patients with systemic sclerosis-associated ILD were followed for 6 months with HRCT and pulmonary function tests. We compared baseline 68Ga-FAPI-04 PET-CT uptake with standard diagnostic tools and predictors of ILD progression. The association of 68Ga-FAPI-04 uptake with changes in forced vital capacity was analysed using mixed-effects models. Follow-up 68Ga-FAPI-04 PET-CT scans were obtained in a subset of patients treated with nintedanib (follow-up between 6-10 months) to assess change over time. FINDINGS: 68Ga-FAPI-04 accumulated in fibrotic areas of the lungs in patients with systemic sclerosis-associated ILD compared with controls, with a median standardised uptake value (SUV) mean over the whole lung of 0·80 (IQR 0·60-2·10) in the systemic sclerosis-ILD group and 0·50 (0·40-0·50) in the control group (p<0·0001) and a mean whole lung maximal SUV of 4·40 (range 3·05-5·20) in the systemic sclerosis-ILD group compared with 0·70 (0·65-0·70) in the control group (p<0·0001). Whole-lung FAPI metabolic active volume (wlFAPI-MAV) and whole-lung total lesion FAPI (wlTL-FAPI) were not measurable in control participants, because no 68Ga-FAPI-04 uptake above background level was observed. In the systemic sclerosis-ILD group the median wlFAPI-MAV was 254·00 cm3 (IQR 163·40-442·30), and the median wlTL-FAPI was 183·60 cm3 (98·04-960·70). 68Ga-FAPI-04 uptake was higher in patients with extensive disease, with previous ILD progression, or high EUSTAR activity scores than in those with with limited disease, previously stable ILD, or low EUSTAR activity scores. Increased 68Ga-FAPI-04 uptake at baseline was associated with progression of ILD independently of extent of involvement on HRCT scan and the forced vital capacity at baseline. In consecutive 68Ga-FAPI-04 PET-CTs, changes in 68Ga-FAPI-04 uptake was concordant with the observed response to the fibroblast-targeting antifibrotic drug nintedanib. INTERPRETATION: Our study presents the first in-human evidence that fibroblast activation correlates with fibrotic activity and disease progression in the lungs of patients with systemic sclerosis-associated ILD and that 68Ga-FAPI-04 PET-CT might improve risk assessment of systemic sclerosis-associated ILD. FUNDING: German Research Foundation, Erlangen Anschubs-und Nachwuchsfinanzierung, Interdisziplinäres Zentrum für Klinische Forschung Erlangen, Bundesministerium für Bildung und Forschung, Deutsche Stiftung Systemische Sklerose, Wilhelm-Sander-Foundation, Else-Kröner-Fresenius-Foundation, European Research Council, Ernst-Jung-Foundation, and Clinician Scientist Program Erlangen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA