RESUMO
There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.
Assuntos
Energia Solar , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Mudança Climática , Poluição Ambiental , Tempo (Meteorologia)RESUMO
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/toxicidade , Ecossistema , Raios Ultravioleta , Mudança Climática , Poluentes Químicos da Água/análiseRESUMO
Cyanobacteria are challenged by daily fluctuations of light intensities and photoperiod in their natural habitats, which affect the physiology and fitness of cyanobacteria. Circadian rhythms (CRs), an important endogenous process found in all organisms including cyanobacteria, control their physiological activities and helps in coping with 24-h light/dark (LD) cycle. In cyanobacteria, physiological responses under rhythmic ultraviolet radiation (UVR) are poorly studied. Therefore, we studied the changes in photosynthetic pigments, and physiological parameters of Synechocystis sp. PCC 6803 under UVR and photosynthetically active radiation (PAR) of light/dark (LD) oscillations having the combinations of 0, 4:20, 8:16, 12:12, 16:8, 20:4, and 24:24 h. The LD 16:8 enhanced the growth, pigments, proteins, photosynthetic efficiency, and physiology of Synechocystis sp. PCC6803. Continuous light (LL 24) of UVR and PAR exerted negative impact on the photosynthetic pigments, and chlorophyll fluorescence. Significant increase in reactive oxygen species (ROS) resulted in loss of plasma membrane integrity followed by decreased viability of cells. The dark phase played a significant role in Synechocystis to withstand the LL 24 under PAR and UVR. This study offers detailed understanding of the physiological responses of the cyanobacterium to changing light environment.
Assuntos
Synechocystis , Synechocystis/metabolismo , Raios Ultravioleta , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo , Ritmo Circadiano , Proteínas de Bactérias/metabolismoRESUMO
This assessment summarises the current state of knowledge on the interactive effects of ozone depletion and climate change on aquatic ecosystems, focusing on how these affect exposures to UV radiation in both inland and oceanic waters. The ways in which stratospheric ozone depletion is directly altering climate in the southern hemisphere and the consequent extensive effects on aquatic ecosystems are also addressed. The primary objective is to synthesise novel findings over the past four years in the context of the existing understanding of ecosystem response to UV radiation and the interactive effects of climate change. If it were not for the Montreal Protocol, stratospheric ozone depletion would have led to high levels of exposure to solar UV radiation with much stronger negative effects on all trophic levels in aquatic ecosystems than currently experienced in both inland and oceanic waters. This "world avoided" scenario that has curtailed ozone depletion, means that climate change and other environmental variables will play the primary role in regulating the exposure of aquatic organisms to solar UV radiation. Reductions in the thickness and duration of snow and ice cover are increasing the levels of exposure of aquatic organisms to UV radiation. Climate change was also expected to increase exposure by causing shallow mixed layers, but new data show deepening in some regions and shoaling in others. In contrast, climate-change related increases in heavy precipitation and melting of glaciers and permafrost are increasing the concentration and colour of UV-absorbing dissolved organic matter (DOM) and particulates. This is leading to the "browning" of many inland and coastal waters, with consequent loss of the valuable ecosystem service in which solar UV radiation disinfects surface waters of parasites and pathogens. Many organisms can reduce damage due to exposure to UV radiation through behavioural avoidance, photoprotection, and photoenzymatic repair, but meta-analyses continue to confirm negative effects of UV radiation across all trophic levels. Modeling studies estimating photoinhibition of primary production in parts of the Pacific Ocean have demonstrated that the UV radiation component of sunlight leads to a 20% decrease in estimates of primary productivity. Exposure to UV radiation can also lead to positive effects on some organisms by damaging less UV-tolerant predators, competitors, and pathogens. UV radiation also contributes to the formation of microplastic pollutants and interacts with artificial sunscreens and other pollutants with adverse effects on aquatic ecosystems. Exposure to UV-B radiation can decrease the toxicity of some pollutants such as methyl mercury (due to its role in demethylation) but increase the toxicity of other pollutants such as some pesticides and polycyclic aromatic hydrocarbons. Feeding on microplastics by zooplankton can lead to bioaccumulation in fish. Microplastics are found in up to 20% of fish marketed for human consumption, potentially threatening food security. Depletion of stratospheric ozone has altered climate in the southern hemisphere in ways that have increased oceanic productivity and consequently the growth, survival and reproduction of many sea birds and mammals. In contrast, warmer sea surface temperatures related to these climate shifts are also correlated with declines in both kelp beds in Tasmania and corals in Brazil. This assessment demonstrates that knowledge of the interactive effects of ozone depletion, UV radiation, and climate change factors on aquatic ecosystems has advanced considerably over the past four years and confirms the importance of considering synergies between environmental factors.
Assuntos
Adaptação Biológica , Organismos Aquáticos/fisiologia , Mudança Climática , Perda de Ozônio , Raios Ultravioleta , Animais , Aquicultura , Organismos Aquáticos/efeitos da radiação , Ecossistema , Poluição Ambiental/efeitos adversos , Poluição Ambiental/análise , Peixes/fisiologia , Água Doce/análise , Camada de Gelo/química , Oceanos e Mares , Fotossíntese , Ozônio Estratosférico/análise , Raios Ultravioleta/efeitos adversos , Zooplâncton/fisiologiaRESUMO
Motile microorganisms such as the green Euglena gracilis use a number of external stimuli to orient in their environment. They respond to light with photophobic responses, photokinesis and phototaxis, all of which can result in accumulations of the organisms in suitable habitats. The light responses operate synergistically with gravitaxis, aerotaxis and other responses. Originally the microscopically obvious stigma was thought to be the photoreceptor, but later the paraxonemal body (PAB, paraflagellar body) has been identified as the light responsive organelle, located in the trailing flagellum inside the reservoir. The stigma can aid in light direction perception by shading the PAB periodically when the cell rotates helically in lateral light, but stigmaless mutants can also orient with respect to the light direction, and negative phototaxis does not need the presence of the stigma. The PAB is composed of dichroically oriented chromoproteins which is reflected in a pronounced polarotaxis in polarized light. There was a long debate about the potential photoreceptor molecule in Euglena, including carotenoids, flavins and rhodopsins. This discussion was terminated by the unambiguous proof that the photoreceptor is a 400 kDa photoactivated adenylyl cyclase (PAC) which consists of two α- and two ß-subunits each. Each subunit possesses two BLUF (Blue Light receptor Using FAD) domains binding FAD, which harvest the light energy, and two adenylyl cyclases, which produce cAMP from ATP. The cAMP has been found to activate one of the five protein kinase s found in Euglena (PK.4). This enzyme in turn is thought to phosphorylate proteins inside the flagellum which result in a change in the flagellar beating pattern and thus a course correction of the cell. The involvements of PAC and protein kinase have been confirmed by RNA interference (RNAi). PAC is responsible for step-up photophobic responses as well as positive and negative phototaxis, but not for the step-down photophobic response, even though the action spectrum of this resembles those for the other two responses. Analysis of several colorless Euglena mutants and the closely related Euglena longa (formerly Astasia longa) confirms the results. Photokinesis shows a completely different action spectrum. Some other Euglena species, such as E. sanguinea and the gliding E. mutabilis, have been investigated, again showing totally different action spectra for phototaxis and photokinesis as well as step-up and step-down photophobic responses.
Assuntos
Euglena gracilis/fisiologia , Fototaxia/fisiologia , Flagelos/genética , Flagelos/metabolismo , Organelas/genética , Organelas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
Motile microorganisms utilize a number of responses to external stimuli including light, temperature, chemicals as well as magnetic and electric fields. Gravity is a major clue to select a niche in their environment. Positive gravitaxis leads an organism down into the water column and negative gravitaxis brings it to the surface. In Euglena the precision of gravitaxis is regulated by an internal rhythm entrained by the daily light/dark cycle. This and the cooperation with phototaxis bring the cells into an optimal position in the water column. In the past a passive orientation based on a buoy mechanism has been proposed for Euglena gracilis, but now it has been proven that this flagellate possesses a physiological gravireceptor and an active orientation. Numerous experiments in space using satellites, rockets and shuttles as well as in parabolic flights have been conducted as well as in functional weightlessness (simulated microgravity) on ground-based facilities such as clinostats to characterize the gravitaxis of Euglena. The threshold for gravity perception was determined and physiological, biochemical and molecular components of the signal transduction chain have been identified. In contrast to higher plants, some algae and ciliates, Euglena does not possess sedimenting statoliths to detect the direction of the gravity vector of the Earth. The gravireceptors were found to be mechano-sensitive Ca2+-conducting ion channels thought to be located at the front end of the cell underneath the trailing flagellum. When activated by gravity-induced pressure due to sedimentation of the whole cell body, they allow a passive influx of calcium along a previously established ion gradient. The entering calcium binds to a specific calmodulin (CaM.2) which in turn activates an adenylyl cyclase producing cAMP from ATP. This cAMP is believed to activate a specific protein kinase A (PK.4), which is postulated to phosphorylate proteins inside the flagellum resulting in a bending and thus a course correction and reorientation with respect to the direction of the gravity vector. The elements of the signal transduction chain have been characterized by inhibitors and by RNAi to prove their involvement in gravitaxis.
Assuntos
Sinalização do Cálcio/fisiologia , Euglena/fisiologia , Flagelos/metabolismo , Gravitação , Proteínas de Protozoários/metabolismo , Resposta Táctica/fisiologia , Flagelos/genética , Proteínas de Protozoários/genéticaRESUMO
Solar ultraviolet (UV) radiation, mainly UV-B (280-315 nm), is one of the most potent genotoxic agents that adversely affects living organisms by altering their genomic stability. DNA through its nucleobases has absorption maxima in the UV region and is therefore the main target of the deleterious radiation. The main biological relevance of UV radiation lies in the formation of several cytotoxic and mutagenic DNA lesions such as cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers (DEWs), as well as DNA strand breaks. However, to counteract these DNA lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, excision repair, and mismatch repair (MMR). Photoreactivation involving the enzyme photolyase is the most frequently used repair mechanism in a number of organisms. Excision repair can be classified as base excision repair (BER) and nucleotide excision repair (NER) involving a number of glycosylases and polymerases, respectively. In addition to this, double-strand break repair, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms to ensure genomic stability. This review concentrates on the UV-induced DNA damage and the associated repair mechanisms as well as various damage detection methods.
Assuntos
Dano ao DNA , Reparo do DNA , DNA/fisiologia , DNA/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Absorção de Radiação , DNA/química , DNA/genética , Adutos de DNA/efeitos da radiação , Quebras de DNA/efeitos da radiação , Desoxirribodipirimidina Fotoliase/metabolismo , Transferência de Energia , Eucariotos/genética , Eucariotos/efeitos da radiação , Humanos , Processos Fotoquímicos , Células Procarióticas/efeitos da radiaçãoRESUMO
Interactions between climate change and UV radiation are having strong effects on aquatic ecosystems due to feedback between temperature, UV radiation, and greenhouse gas concentration. Higher air temperatures and incoming solar radiation are increasing the surface water temperatures of lakes and oceans, with many large lakes warming at twice the rate of regional air temperatures. Warmer oceans are changing habitats and the species composition of many marine ecosystems. For some, such as corals, the temperatures may become too high. Temperature differences between surface and deep waters are becoming greater. This increase in thermal stratification makes the surface layers shallower and leads to stronger barriers to upward mixing of nutrients necessary for photosynthesis. This also results in exposure to higher levels of UV radiation of surface-dwelling organisms. In polar and alpine regions decreases in the duration and amount of snow and ice cover on lakes and oceans are also increasing exposure to UV radiation. In contrast, in lakes and coastal oceans the concentration and colour of UV-absorbing dissolved organic matter (DOM) from terrestrial ecosystems is increasing with greater runoff from higher precipitation and more frequent extreme storms. DOM thus creates a refuge from UV radiation that can enable UV-sensitive species to become established. At the same time, decreased UV radiation in such surface waters reduces the capacity of solar UV radiation to inactivate viruses and other pathogens and parasites, and increases the difficulty and price of purifying drinking water for municipal supplies. Solar UV radiation breaks down the DOM, making it more available for microbial processing, resulting in the release of greenhouse gases into the atmosphere. In addition to screening solar irradiance, DOM, when sunlit in surface water, can lead to the formation of reactive oxygen species (ROS). Increases in carbon dioxide are in turn acidifying the oceans and inhibiting the ability of many marine organisms to form UV-absorbing exoskeletons. Many aquatic organisms use adaptive strategies to mitigate the effects of solar UV-B radiation (280-315 nm), including vertical migration, crust formation, synthesis of UV-absorbing substances, and enzymatic and non-enzymatic quenching of ROS. Whether or not genetic adaptation to changes in the abiotic factors plays a role in mitigating stress and damage has not been determined. This assessment addresses how our knowledge of the interactive effects of UV radiation and climate change factors on aquatic ecosystems has advanced in the past four years.
Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Raios Ultravioleta , Animais , Organismos Aquáticos/efeitos dos fármacos , Peixes/fisiologia , Mamíferos/fisiologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
The productivity of aquatic primary producers depends on a number of biotic and abiotic factors, such as pH, CO2 concentration, temperature, nutrient availability, solar UV and PAR irradiances, mixing frequency as well as herbivore pressure and the presence of viruses, among others. The effects of these factors, within a climate change context, may be additive, synergistic or antagonistic. Since some of them, e.g. solar radiation and temperature, vary along a latitudinal gradient, this perspective about the effects of global climate change on primary producers will consider ecosystems individually, separated into polar (Arctic and Antarctic), temperate and tropical waters. As coastal waters are characterized by lower light penetration and higher DOM and nutrient concentrations, they are considered in a separate section. Freshwater systems are also governed by different conditions and therefore also treated in their own section. Overall, we show that although there are general common trends of changes in variables associated with global change (e.g. the impact of UVR on photosynthesis tends to decrease with increasing temperature and nutrient input), the responses of aquatic primary producers have great variability in the different ecosystems across latitudes. This is mainly due to direct or indirect effects associated with physico-chemical changes that occur within water bodies. Therefore we stress the need for regional predictions on the responses of primary producers to climate change as it is not warranted to extrapolate from one system to another.
RESUMO
The spectral conversion of incident sunlight by appropriate photoluminescent materials has been a widely studied issue for improving the efficiency of photovoltaic solar energy harvesting. By using phosphors with suitable excitation/emission properties, also the light conditions for plants can be adjusted to match the absorption spectra of chlorophyll dyes, in this way increasing the photosynthetic activity of the plant. Here, we report on the application of this principle to a high plant, Spinacia oleracea. We employ a calcium strontium sulfide phosphor doped with divalent europium (Ca0.4Sr0.6S:Eu(2+), CSSE) on a backlight conversion foil in photosynthesis experiments. We show that this phosphor can be used to effectively convert green to red light, centering at a wavelength of ~650 nm which overlaps the absorption peaks of chlorophyll a/b pigments. A measurement system was developed to monitor the photosynthetic activity, expressed as the CO2 assimilation rate of spinach leaves under various controlled light conditions. Results show that under identical external light supply which is rich in green photons, the CO2 assimilation rate can be enhanced by more than 25% when the actinic light is modified by the CSSE conversion foil as compared to a purely reflecting reference foil. These results show that the phosphor could be potentially applied to modify the solar spectrum by converting the green photons into photosynthetically active red photons for improved photosynthetic activity.
Assuntos
Luminescência , Fotossíntese , Spinacia oleracea/fisiologia , Estrôncio/química , Dióxido de Carbono/metabolismo , Fótons , Espectrometria de Fluorescência , Fatores de TempoRESUMO
A biofilm is an aggregation of surface-associated microbial cells that is confined in an extracellular polymeric substance (EPS) matrix. Infections caused by microbes that form biofilms are linked to a variety of animals, including insects and humans. Antibiotics and other antimicrobials can be used to remove or eradicate biofilms in order to treat infections. However, due to biofilm resistance to antibiotics and antimicrobials, clinical observations and experimental research clearly demonstrates that antibiotic and antimicrobial therapies alone are frequently insufficient to completely eradicate biofilm infections. Therefore, it becomes crucial and urgent for clinicians to properly treat biofilm infections with currently available antimicrobials and analyze the results. Numerous biofilm-fighting strategies have been developed as a result of advancements in nanoparticle synthesis with an emphasis on metal oxide np. This review focuses on several therapeutic strategies that are currently being used and also those that could be developed in the future. These strategies aim to address important structural and functional aspects of microbial biofilms as well as biofilms' mechanisms for drug resistance, including the EPS matrix, quorum sensing (QS), and dormant cell targeting. The NPs have demonstrated significant efficacy against bacterial biofilms in a variety of bacterial species. To overcome resistance, treatments such as nanotechnology, quorum sensing, and photodynamic therapy could be used.
RESUMO
The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of increased UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was published in 2010 (Photochem. Photobiol. Sci., 2011, 10, 173-300). In the years in between, the EEAP produces less detailed and shorter progress reports, which highlight and assess the significance of developments in key areas of importance to the parties. The next full quadrennial report will be published in 2014-2015.
Assuntos
Mudança Climática , Ozônio/análise , Animais , Humanos , Raios UltravioletaRESUMO
Photosynthesis is the basis of almost all life on Earth. In addition to providing energy, plants and algae provide a plethora of secondary substances useful in the treatment of a number of illnesses including a wide array of cancer maladies. The first organisms on Earth used chemosynthesis for their energy needs. Photosynthetic bacteria utilize one of two different photosystems whereas cyanobacteria, eukaryotic algae and plants combine two photosystems in a linear electron transport chain. Accessory pigments such as various chlorophylls, carotenoids and phycobilins absorb the energy of impinging photons and funnel it to the reaction centers (P680 in photosystem II and P700 in photosystem I). Water is split photochemically, electrons are transported to reduce NADPH, oxygen is discarded as waste product, and protons accumulate inside the thylakoid vesicles in the chloroplasts. The resulting electrochemical gradient across the membrane is used to drive an ATPase. The produced ATP and NADPH+H+ are utilized in the Calvin cycle to fix CO2 and to produce fructose.
Assuntos
Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Adenosina Trifosfatases , Trifosfato de Adenosina , Dióxido de Carbono , Carotenoides , Transporte de Elétrons , Frutose , NADP , Oxigênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilinas , Prótons , ÁguaRESUMO
Human exploration of space and other celestial bodies bears a multitude of challenges. The Earth-bound supply of material and food is restricted, and in situ resource utilisation (ISRU) is a prerequisite. Excellent candidates for delivering several services are unicellular algae, such as the space-approved flagellate Euglena gracilis. This review summarizes the main characteristics of this unicellular organism. Euglena has been exposed on various platforms that alter the impact of gravity to analyse its corresponding gravity-dependent physiological and molecular genetic responses. The sensory transduction chain of gravitaxis in E. gracilis has been identified. The molecular gravi-(mechano-)receptors are mechanosensory calcium channels (TRP channels). The inward gated calcium binds specifically to one of several calmodulins (CaM.2), which, in turn, activates an adenylyl cyclase. This enzyme uses ATP to produce cAMP, which induces protein kinase A, followed by the phosphorylation of a motor protein in the flagellum, initiating a course correction, and, finally, resulting in gravitaxis. During long space missions, a considerable amount of food, oxygen, and water has to be carried, and the exhaled carbon dioxide has to be removed. In this context, E. gracilis is an excellent candidate for biological life support systems, since it produces oxygen by photosynthesis, takes up carbon dioxide, and is even edible. Various species and mutants of Euglena are utilized as a producer of commercial food items, as well as a source of medicines, as it produces a number of vitamins, contains numerous trace elements, and synthesizes dietary proteins, lipids, and the reserve molecule paramylon. Euglena has anti-inflammatory, -oxidant, and -obesity properties.
RESUMO
A chemical analysis of water quality cannot detect some toxicants due to time constraints, high costs, and limited interactions for detection. Bioassays would offer a complementary means to assess pollution levels in water. Euglena is a flagellate green alga and an excellent system for toxicity testing thanks to its ease of culture, rapid growth, and quick response to environmental stresses. Herein, we examined the sensitivity of E. agilis to seven heavy metals by analyzing six end-point parameters: motility, velocity, cell compactness, upward swimming, r-value, and alignment. Notably, the velocity of E. agilis was most sensitive to cadmium (96.28 mg·L-1), copper (6.51 mg·L-1), manganese (103.28 mg·L-1), lead (78.04 mg·L-1), and zinc (101.90 mg·L-1), while r-values were most sensitive to arsenic (12.84 mg·L-1) and mercury (4.26 mg·L-1). In this study, velocity and r-values are presented as useful biomarkers for the assessment of metal toxicity in Euglena. The metals As, Cd, Cu, and Pb were suitable for this test. The advantages of the ecotoxicity test are its rapidity: It takes 10 min to obtain results, as opposed to the typical 3-4 d of exposure time with intensive labor. Moreover, this test can be performed at room temperature under dark conditions.
RESUMO
The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (<10 W/m(2)) and a negative one at higher irradiances (>10 W/m(2)). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.
Assuntos
Adenilil Ciclases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Euglena gracilis/enzimologia , Gravitropismo/fisiologia , Fototropismo/fisiologia , Sequência de Bases , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ativação Enzimática , Euglena gracilis/efeitos dos fármacos , Euglena gracilis/fisiologia , Gravitropismo/efeitos dos fármacos , Transdução de Sinal Luminoso , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Dados de Sequência Molecular , Fotofosforilação , Fototropismo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Estaurosporina/farmacologiaRESUMO
Mycosporine-like amino acids (MAAs) are a family of more than 20 compounds having absorption maxima between 310 and 362 nm. These compounds are well known for their UV-absorbing/screening role in various organisms and seem to have evolutionary significance. In the present investigation we tested four cyanobacteria, e.g., Anabaena variabilis PCC 7937, Anabaena sp. PCC 7120, Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 6301, for their ability to synthesize MAA and conducted genomic and phylogenetic analysis to identify the possible set of genes that might be involved in the biosynthesis of these compounds. Out of the four investigated species, only A. variabilis PCC 7937 was able to synthesize MAA. Genome mining identified a combination of genes, YP_324358 (predicted DHQ synthase) and YP_324357 (O-methyltransferase), which were present only in A. variabilis PCC 7937 and missing in the other studied cyanobacteria. Phylogenetic analysis revealed that these two genes are transferred from a cyanobacterial donor to dinoflagellates and finally to metazoa by a lateral gene transfer event. All other cyanobacteria, which have these two genes, also had another copy of the DHQ synthase gene. The predicted protein structure for YP_324358 also suggested that this product is different from the chemically characterized DHQ synthase of Aspergillus nidulans contrary to the YP_324879, which was predicted to be similar to the DHQ synthase. The present study provides a first insight into the genes of cyanobacteria involved in MAA biosynthesis and thus widens the field of research for molecular, bioinformatics and phylogenetic analysis of these evolutionary and industrially important compounds. Based on the results we propose that YP_324358 and YP_324357 gene products are involved in the biosynthesis of the common core (deoxygadusol) of all MAAs.
Assuntos
Biologia Computacional/métodos , Cianobactérias/genética , Cicloexanonas/metabolismo , Genoma Bacteriano , Aminoácidos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Genes Bacterianos , Modelos Moleculares , FilogeniaRESUMO
This study summarizes the response of a hot spring cyanobacterium Fischerella sp. strain HKAR-14, under simulated light conditions of ultraviolet radiation (UVR), photosynthetically active radiation (PAR), PAR + UV-A (PA) and PAR + UV-A + UV-B (PAB). Exposure to UVR caused a decline in growth and Chl a while total carotene content increased under PA and PAB. Maximum photochemical efficiency of photosystem II (F v /F m) and relative electron transport rate decreased significantly in PA and PAB exposure. Higher non-photochemical quenching and lower photochemical quenching values were observed in UVR-exposed samples as compared to the control. Levels of intracellular reactive oxygen species (ROS) increased significantly in PAB and PA. Fluorescence microscopic images showed an increase in green fluorescence, indicating the generation of ROS in UVR. The antioxidant machinery including superoxide dismutase, catalase and peroxidase showed an increase of 1.76-fold and 2.5-fold superoxide dismutase, 2.4-fold and 3.7-fold catalase, 1.83-fold and 2.5-fold peroxidase activities under PA and PAB, respectively. High-performance liquid chromatography equipped with photodiode array detector, electrospray ionization mass spectrometry, Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy analyses reveal the occurrence of a single mycosporine-like amino acid, shinorine (λ max 332.3 ± 2 nm, m/z 333.1), with a retention time of 1.157 min. The electrochemical characterization of shinorine was determined by cyclic voltammetry. The shinorine molecule possesses electrochemical activity and represents diffusion-controlled process in 0.1 M (pH 7.0) phosphate buffer. An antioxidant assay of shinorine showed its efficient activity as antioxidant which increased in a dose-dependent manner.
RESUMO
The generation of reactive oxygen species (ROS) under simulated solar radiation (UV-B: 0.30Wm(-2), UV-A: 25.70Wm(-2) and PAR: 118.06Wm(-2)) was studied in the cyanobacterium Anabaena variabilis PCC 7937 using the oxidant-sensing fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DCFH-DA is a nonpolar dye, converted into the polar derivative DCFH by cellular esterases that are nonfluorescent but switched to highly fluorescent DCF when oxidized by intracellular ROS and other peroxides. The images obtained from the fluorescence microscope after 12h of irradiation showed green fluorescence from cells covered with 295, 320 or 395nm cut-off filters, indicating the generation of ROS in all treatments. However, the green/red fluorescence ratio obtained from fluorescence microscopic analysis showed the highest generation of ROS after UV-B radiation in comparison to PAR or UV-A radiation. Production of ROS was also measured by a spectrofluorophotometer and results obtained supported the results of fluorescence microscopy. Low levels of ROS were detected at the start (0h) of the experiment showing that they are generated even during normal metabolism. This study also showed that UV-B radiation causes the fragmentation of the cyanobacterial filaments which could be due to the observed oxidative stress. This is the first report for the detection of intracellular ROS in a cyanobacterium by fluorescence microscopy using DCFH-DA and thereby suggesting the applicability of this method in the study of in vivo generation of ROS.
Assuntos
Anabaena variabilis/química , Fluoresceínas/química , Corantes Fluorescentes/química , Espécies Reativas de Oxigênio/análise , Anabaena variabilis/efeitos da radiação , Fluorofotometria/métodos , Microscopia de Fluorescência/métodos , Estresse Oxidativo , Energia Solar , Raios UltravioletaRESUMO
The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with UV radiation and its effects on human health, animals, plants, biogeochemistry, air quality and materials. Since 2000, the analyses and interpretation of these effects have included interactions between UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will likely be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was that for 2006 (Photochem. Photobiol. Sci., 2007, 6, 201-332). In the years in between, the EEAP produces a less detailed and shorter progress report, as is the case for this present one for 2009. A full quadrennial report will follow for 2010.