Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacokinet Pharmacodyn ; 40(6): 651-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24158456

RESUMO

Body composition and body mass are pivotal clinical endpoints in studies of welfare diseases. We present a combined effort of established and new mathematical models based on rigorous monitoring of energy intake (EI) and body mass in mice. Specifically, we parameterize a mechanistic turnover model based on the law of energy conservation coupled to a drug mechanism model. Key model variables are fat-free mass (FFM) and fat mass (FM), governed by EI and energy expenditure (EE). An empirical Forbes curve relating FFM to FM was derived experimentally for female C57BL/6 mice. The Forbes curve differs from a previously reported curve for male C57BL/6 mice, and we thoroughly analyse how the choice of Forbes curve impacts model predictions. The drug mechanism function acts on EI or EE, or both. Drug mechanism parameters (two to three parameters) and system parameters (up to six free parameters) could be estimated with good precision (coefficients of variation typically <20 % and not greater than 40 % in our analyses). Model simulations were done to predict the EE and FM change at different drug provocations in mice. In addition, we simulated body mass and FM changes at different drug provocations using a similar model for man. Surprisingly, model simulations indicate that an increase in EI (e.g. 10 %) was more efficient than an equal lowering of EI. Also, the relative change in body mass and FM is greater in man than in mouse at the same relative change in either EI or EE. We acknowledge that this assumes the same drug mechanism impact across the two species. A set of recommendations regarding the Forbes curve, vehicle control groups, dual action on EI and loss, and translational aspects are discussed. This quantitative approach significantly improves data interpretation, disease system understanding, safety assessment and translation across species.


Assuntos
Composição Corporal/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Modelos Biológicos , Obesidade/metabolismo , Animais , Depressores do Apetite/administração & dosagem , Depressores do Apetite/uso terapêutico , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Descoberta de Drogas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/prevenção & controle
2.
PLoS One ; 10(9): e0138373, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26397098

RESUMO

The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic ß-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.


Assuntos
Comportamento de Escolha , Dieta Hiperlipídica , Comportamento Alimentar , Canais de Cátion TRPM/deficiência , Paladar , Aumento de Peso , Animais , Cacau , Metabolismo Energético , Jejum , Feminino , Intolerância à Glucose/patologia , Teste de Tolerância a Glucose , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Fenótipo , Canais de Cátion TRPM/metabolismo
3.
Metabolism ; 57(12): 1704-10, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19013294

RESUMO

Chronic inflammation and increased visceral adipose tissue (VAT) are key elements of the metabolic syndrome. Both are considered to play a pathogenic role in the development of liver steatosis and insulin resistance. The aim of the present study was to investigate the hypothesis that an inflamed intestine, induced both by diet and chemical irritation, could induce persistent inflammation in VAT. Female C57BL/6JOlaHsd mice were used. In study I, groups of mice (n = 6 per group) were given an obesity-inducing cafeteria diet (diet-induced obesity) or regular chow only (control) for 14 weeks. In study II, colitis in mice (n = 8) was induced by 3% dextran sulfate sodium in tap water for 5 days followed by 21 days of tap water alone. Healthy control mice (n = 8) had tap water only. At the end of the studies, all mice were killed; and blood and tissues were sampled and processed for analysis. Body weight of diet-induced obese mice was greatly increased, with evidence of systemic inflammation, insulin resistance, and liver steatosis. Tissue inflammation indexed by proinflammatory cytokine expression was recorded in liver, mesenteric fat, and proximal colon/distal ileum, but not in subcutaneous or perigonadal fat. In dextran sulfate sodium-induced colitis mice, mesenteric fat was even more inflamed than the colon, whereas a much milder inflammation was seen in liver and subcutaneous fat. The studies showed both diet- and colitis-initiated inflammation in mesenteric fat. Fat depots contiguous with intestine and their capacity for exaggerated inflammatory responses to conditions of impaired gut barrier function may account for the particularly pathogenic role of VAT in obesity-induced metabolic disorders.


Assuntos
Gastroenterite/complicações , Hepatite Animal/complicações , Obesidade/complicações , Paniculite Peritoneal/complicações , Animais , Peso Corporal/fisiologia , Citocinas/sangue , Citocinas/metabolismo , Dieta Aterogênica , Feminino , Gastroenterite/sangue , Gastroenterite/patologia , Gastroenterite/veterinária , Hepatite Animal/sangue , Hepatite Animal/patologia , Mucosa Intestinal/metabolismo , Intestinos/patologia , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/patologia , Obesidade/veterinária , Tamanho do Órgão , Paniculite Peritoneal/sangue , Paniculite Peritoneal/patologia , Paniculite Peritoneal/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA