Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(44): 29854-8, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26488053

RESUMO

Half-Heusler (HH) compounds have shown high figure of merit up to 1.5. Here, we address the long-term stability of n- and p-type HH materials. For this purpose, we investigated HH materials based on the Ti0.3Zr0.35Hf0.35NiSn-system after 500 cycles (1700 h) from 373 to 873 K. Both compounds exhibit a maximum Seebeck coefficient of |α|≈ 210 µV K(-1) and a phase separation into two HH phases. The dendritic microstructure is temperature resistant and upon cycling the changes in the microstructure are so marginal that the low thermal conductivity values (κ < 4 W m(-1) K(-1)) could be maintained. Our results emphasize that phase-separated HH compounds are suitable low cost materials and can lead to enhanced thermoelectric efficiencies beyond the set benchmark for industrial applications.

2.
Ultramicroscopy ; 205: 39-48, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31234101

RESUMO

Populations of nickel nanocrystals in a borosilicate glass were studied by TEM and XRM. It is found that XRM, which is applied for the first time to this type of material, is superior for the precise determination of the depth-dependent number densities and volume fractions of precipitated Ni crystals. Statistical precision is gained by imaging 3D data of up to 60 times larger volumes as compared to the volume of the electron transparent rim that a standard TEM wedge specimen provides. Depth-dependent particle-size distributions of XRM were in agreement with those of TEM as the mean sizes of the Ni crystal populations were considerably larger than the XRM resolution limit.

3.
Ophthalmologe ; 115(1): 47-54, 2018 01.
Artigo em Alemão | MEDLINE | ID: mdl-28741162

RESUMO

BACKGROUND: Femtosecond lasers (fs-lasers) are established cutting instruments for the creation of LASIK flaps. Previous studies often showed even rougher surfaces after application of fs-laser systems compared to lamellar keratotomy with mechanical microkeratomes. When cutting the cornea with fs-lasers, an intrastromal gas development occurs, which has a potentially negative influence on the cutting quality if the gas cannot be dissipated; therefore, manufacturers have chosen the way of gas assimilation in so-called pockets. The investigated system creates a tunnel which opens under the conjunctiva. The aim of this study was to investigate the effects of a tunnel as well as the influence of different spot distances on the quality of cut surfaces and edges. MATERIAL AND METHODS: In this experimental study on freshly enucleated porcine eyes (n = 15), the following cuts were carried out with the FS-200 (Wavelight, Erlangen, Germany): 1. standard setting (spot and line separation 8 µm), 2. with tunnel for gas drainage, 3. without gas-conducting tunnel, 4. with increased spot spacing (spot and line separation 9 µm instead of 8 µm) and 5. with reduced spot spacing (spot and line separation 7 µm instead of 8 µm). Subsequently, scanning electron microscopy (FEI Quanta 650, Hillsboro, OR) of the cut edges and surfaces as well as the gas drain tunnel were performed. The evaluation was based on an established score. RESULTS: The current fs-laser system (200 Hz) is able to create smooth cutting surfaces and sharp edges. The changed density of laser pulses compared to the standard settings with a reduced or increased distance between the pulses, did not achieve any further improvement in the surface quality. The gas-conducting tunnel could be detected by scanning electron microscope. In the case of cutting without a tunnel, roughened surfaces and irregularities on the cutting edges were found. CONCLUSION: When the FS-200 fs-laser is used, LASIK cuts with very smooth cut surfaces and sharp cutting edges are achieved. This is only valid as long as an additional tunnel with the fs-laser is placed under the conjunctiva. It can be assumed that the resulting gas is effectively drained through this tunnel. The installation of the tunnel represents a new possibility to replace previous techniques of gas assimilation in deeper lying cutting areas.


Assuntos
Elétrons , Ceratomileuse Assistida por Excimer Laser In Situ , Animais , Córnea , Substância Própria , Alemanha , Microscopia Eletrônica de Varredura , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA