Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958899

RESUMO

The p21-activated kinases (PAKs) are important signaling proteins. They contribute to a surprisingly wide range of cellular processes and play critical roles in a number of human diseases including cancer, neurological disorders and cardiac diseases. To get a better understanding of PAK functions, mechanisms and integration of various cellular activities, we screened for proteins that bind to the budding yeast PAK Ste20 as an example, using the split-ubiquitin technique. We identified 56 proteins, most of them not described previously as Ste20 interactors. The proteins fall into a small number of functional categories such as vesicle transport and translation. We analyzed the roles of Ste20 in glucose metabolism and gene expression further. Ste20 has a well-established role in the adaptation to changing environmental conditions through the stimulation of mitogen-activated protein kinase (MAPK) pathways which eventually leads to transcription factor activation. This includes filamentous growth, an adaptation to nutrient depletion. Here we show that Ste20 also induces filamentous growth through interaction with nuclear proteins such as Sac3, Ctk1 and Hmt1, key regulators of gene expression. Combining our observations and the data published by others, we suggest that Ste20 has several new and unexpected functions.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Humanos , MAP Quinase Quinase Quinases/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Am J Hum Genet ; 99(3): 674-682, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27523597

RESUMO

We have used whole-exome sequencing in ten individuals from four unrelated pedigrees to identify biallelic missense mutations in the nuclear-encoded mitochondrial inorganic pyrophosphatase (PPA2) that are associated with mitochondrial disease. These individuals show a range of severity, indicating that PPA2 mutations may cause a spectrum of mitochondrial disease phenotypes. Severe symptoms include seizures, lactic acidosis, cardiac arrhythmia, and death within days of birth. In the index family, presentation was milder and manifested as cardiac fibrosis and an exquisite sensitivity to alcohol, leading to sudden arrhythmic cardiac death in the second decade of life. Comparison of normal and mutant PPA2-containing mitochondria from fibroblasts showed that the activity of inorganic pyrophosphatase was significantly reduced in affected individuals. Recombinant PPA2 enzymes modeling hypomorphic missense mutations had decreased activity that correlated with disease severity. These findings confirm the pathogenicity of PPA2 mutations and suggest that PPA2 is a cardiomyopathy-associated protein, which has a greater physiological importance in mitochondrial function than previously recognized.


Assuntos
Morte Súbita Cardíaca/etiologia , Pirofosfatase Inorgânica/deficiência , Pirofosfatase Inorgânica/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto/genética , Acidose Láctica/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Arritmias Cardíacas/genética , Cardiomiopatias/enzimologia , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Criança , Pré-Escolar , Morte Súbita Cardíaca/patologia , Etanol/efeitos adversos , Exoma/genética , Feminino , Fibroblastos/citologia , Fibroblastos/patologia , Fibrose/enzimologia , Fibrose/genética , Fibrose/patologia , Humanos , Lactente , Recém-Nascido , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/metabolismo , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/patologia , Doenças Mitocondriais/fisiopatologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Linhagem , Fenótipo , Convulsões , Adulto Jovem
3.
Biochem Biophys Res Commun ; 517(4): 611-616, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31395335

RESUMO

p21-activated kinases (PAKs) are important signalling molecules with a wide range of functions. In budding yeast, the main PAKs Ste20 and Cla4 regulate the response to hyperosmotic stress, which is an excellent model for the adaptation to changing environmental conditions. In this pathway, the only known function of Ste20 and Cla4 is the activation of a mitogen-activated protein kinase (MAPK) cascade through Ste11. This eventually leads to increased transcription of glycerol biosynthesis genes, the most important response to hyperosmotic shock. Here, we show that Ste20 and Cla4 not only stimulate transcription, they also bind to the glycerol biosynthesis enzymes Gpd1, Gpp1 and Gpp2. Protein levels of Gpd1, the enzyme that catalyzes the rate limiting step in glycerol synthesis, positively correlate with glucose availability. Using a chemical genetics approach, we find that simultaneous inactivation of STE20 and CLA4 reduces the glucose-induced increase of Gpd1 levels, whereas the deletion of either STE20 or CLA4 alone has no effect. This is also observed for the hyperosmotic stress-induced increase of Gpd1 levels. Importantly, under both conditions the deletion of STE11 has no effect on Gpd1 induction. These observations suggest that Ste20 and Cla4 not only have a role in the transcriptional regulation of GPD1 through Ste11. They also seem to modulate GPD1 expression at another level such as translation or protein degradation.


Assuntos
Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Glicerol/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Glucose/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
4.
Mol Microbiol ; 99(3): 512-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26448198

RESUMO

The transition between a unicellular yeast form to multicellular filaments is crucial for budding yeast foraging and the pathogenesis of many fungal pathogens such as Candida albicans. Here, we examine the role of the related transcription factors Ecm22 and Upc2 in Saccharomyces cerevisiae filamentation. Overexpression of either ECM22 or UPC2 leads to increased filamentation, whereas cells lacking both ECM22 and UPC2 do not exhibit filamentous growth. Ecm22 and Upc2 positively control the expression of FHN1, NPR1, PRR2 and sterol biosynthesis genes. These genes all play a positive role in filamentous growth, and their expression is upregulated during filamentation in an Ecm22/Upc2-dependent manner. Furthermore, ergosterol content increases during filamentous growth. UPC2 expression also increases during filamentation and is inhibited by the transcription factors Sut1 and Sut2. The expression of SUT1 and SUT2 in turn is under negative control of the transcription factor Ste12. We suggest that during filamentation Ste12 becomes activated and reduces SUT1/SUT2 expression levels. This would result in increased UPC2 levels and as a consequence to transcriptional activation of FHN1, NPR1, PRR2 and sterol biosynthesis genes. Higher ergosterol levels in combination with the proteins Fhn1, Npr1 and Prr2 would then mediate the transition to filamentous growth.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Esteróis/biossíntese , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética , Zinco/metabolismo
5.
Biochem Biophys Res Commun ; 493(4): 1485-1490, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28986257

RESUMO

Budding yeast mating is an excellent model for receptor-activated cell differentiation. Here we identify the related transcription factors Ecm22 and Upc2 as novel regulators of mating. Cells lacking both ECM22 and UPC2 display strong mating defects whereas deletion of either gene has no effect. Ecm22 and Upc2 positively regulate basal expression of PRM1 and PRM4. These genes are strongly induced in response to mating pheromone, which is also largely dependent on ECM22 and UPC2. We further show that deletion of PRM4 like PRM1 results in markedly reduced mating efficiency. Expression of PRM1 but not of PRM4 is also regulated by Ste12, a key transcription factor for mating. STE12 deletion lowers basal PRM1 expression, whereas STE12 overexpression strongly increases PRM1 levels. This regulation of PRM1 transcription is mediated through three Ste12-binding sites in the PRM1 promoter. Simultaneous deletion of ECM22 and UPC2 as well as mutation of the three Ste12-binding sites in the PRM1 promoter completely abolishes basal and pheromone-induced PRM1 expression, indicating that Ste12 and Ecm22/Upc2 control PRM1 transcription through distinct pathways. In summary, we propose a novel mechanism for budding yeast mating. We suggest that Ecm22 and Upc2 regulate mating through the induction of the mating genes PRM1 and PRM4.


Assuntos
Proteínas de Transporte de Cátions/genética , Genes Fúngicos , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Transativadores/genética , Transativadores/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Sítios de Ligação/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Feromônios/fisiologia , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
6.
Int J Mol Sci ; 18(4)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379181

RESUMO

Zinc cluster proteins are a large family of transcriptional regulators with a wide range of biological functions. The zinc cluster proteins Ecm22, Upc2, Sut1 and Sut2 have initially been identified as regulators of sterol import in the budding yeast Saccharomyces cerevisiae. These proteins also control adaptations to anaerobic growth, sterol biosynthesis as well as filamentation and mating. Orthologs of these zinc cluster proteins have been identified in several species of Candida. Upc2 plays a critical role in antifungal resistance in these important human fungal pathogens. Upc2 is therefore an interesting potential target for novel antifungals. In this review we discuss the functions, mode of actions and regulation of Ecm22, Upc2, Sut1 and Sut2 in budding yeast and Candida.


Assuntos
Candida albicans/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Candida albicans/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Homeostase , Humanos , Metabolismo dos Lipídeos , Modelos Moleculares , Proteínas Repressoras/química , Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Dedos de Zinco
7.
Eukaryot Cell ; 12(2): 244-53, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23223039

RESUMO

Sut1 is a transcriptional regulator of the Zn(II)(2)Cys(6) family in the budding yeast Saccharomyces cerevisiae. The only function that has been attributed to Sut1 is sterol uptake under anaerobic conditions. Here, we show that Sut1 is also expressed in the presence of oxygen, and we identify a novel function for Sut1. SUT1 overexpression blocks filamentous growth, a response to nutrient limitation, in both haploid and diploid cells. This inhibition by Sut1 is independent of its function in sterol uptake. Sut1 downregulates the expression of GAT2, HAP4, MGA1, MSN4, NCE102, PRR2, RHO3, and RHO5. Several of these Sut1 targets (GAT2, HAP4, MGA1, RHO3, and RHO5) are essential for filamentation in haploids and/or diploids. Furthermore, the expression of the Sut1 target genes, with the exception of MGA1, is induced during filamentous growth. We also show that SUT1 expression is autoregulated and inhibited by Ste12, a key transcriptional regulator of filamentation. We propose that Sut1 partially represses the expression of GAT2, HAP4, MGA1, MSN4, NCE102, PRR2, RHO3, and RHO5 when nutrients are plentiful. Filamentation-inducing conditions relieve this repression by Sut1, and the increased expression of Sut1 targets triggers filamentous growth.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Glicoproteínas de Membrana/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
8.
Biochem Biophys Res Commun ; 438(1): 66-70, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23872066

RESUMO

The zinc cluster proteins Sut1 and Sut2 play a role in sterol uptake and filamentous growth in the budding yeast Saccharomyces cerevisiae. In this study, we show that they are also involved in mating. Cells that lack both SUT1 and SUT2 were defective in mating. The expression of the genes NCE102 and PRR2 was increased in the sut1 sut2 double deletion mutant suggesting that Sut1 and Sut2 both repress the expression of NCE102 and PRR2. Consistent with these data, overexpression of either SUT1 or SUT2 led to lower expression of NCE102 and PRR2. Furthermore, expression levels of NCE102, PRR2 and RHO5, another target gene of Sut1 and Sut2, decreased in response to pheromone. Prr2 has been identified as a mating inhibitor before. Here we show that overexpression of NCE102 and RHO5 also reduced mating. Our results suggest that Sut1 and Sut2 positively regulate mating by repressing the expression of the mating inhibitors NCE102, PRR2 and RHO5 in response to pheromone.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Reprodução Assexuada/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Dedos de Zinco/fisiologia
9.
Eukaryot Cell ; 11(4): 442-51, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327006

RESUMO

In the budding yeast Saccharomyces cerevisiae, the Cdc42 effector Ste20 plays a crucial role in the regulation of filamentous growth, a response to nutrient limitation. Using the split-ubiquitin technique, we found that Ste20 forms a complex with Vma13, an important regulatory subunit of vacuolar H(+)-ATPase (V-ATPase). This protein-protein interaction was confirmed by a pulldown assay and coimmunoprecipitation. We also demonstrate that Ste20 associates with vacuolar membranes and that Ste20 stimulates V-ATPase activity in isolated vacuolar membranes. This activation requires Ste20 kinase activity and does not depend on increased assembly of the V1 and V0 sectors of the V-ATPase, which is a major regulatory mechanism. Furthermore, loss of V-ATPase activity leads to a strong increase in invasive growth, possibly because these cells fail to store and mobilize nutrients efficiently in the vacuole in the absence of the vacuolar proton gradient. In contrast to the wild type, which grows in rather small, isolated colonies on solid medium during filamentation, hyperinvasive vma mutants form much bigger aggregates in which a large number of cells are tightly clustered together. Genetic data suggest that Ste20 and the protein kinase A catalytic subunit Tpk2 are both activated in the vma13Δ strain. We propose that during filamentous growth, Ste20 stimulates V-ATPase activity. This would sustain nutrient mobilization from vacuolar stores, which is beneficial for filamentous growth.


Assuntos
MAP Quinase Quinase Quinases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Ativação Enzimática , Deleção de Genes , Hifas/enzimologia , Hifas/genética , Hifas/crescimento & desenvolvimento , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/enzimologia , Vacúolos/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
10.
J Cell Biol ; 164(2): 219-31, 2004 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-14734533

RESUMO

The guanine nucleotide exchange factor Cdc24, the GTPase Cdc42, and the Cdc42 effectors Cla4 and Ste20, two p21-activated kinases, form a signal transduction cascade that promotes mitotic exit in yeast. We performed a genetic screen to identify components of this pathway. Two related bud cortex-associated Cdc42 effectors, Gic1 and Gic2, were obtained as factors that promoted mitotic exit independently of Ste20. The mitotic exit function of Gic1 was dependent on its activation by Cdc42 and on the release of Gic1 from the bud cortex. Gic proteins became essential for mitotic exit when activation of the mitotic exit network through Cdc5 polo kinase and the bud cortex protein Lte1 was impaired. The mitotic exit defect of cdc5-10 Deltalte1 Deltagic1 Deltagic2 cells was rescued by inactivation of the inhibiting Bfa1-Bub2 GTPase-activating protein. Moreover, Gic1 bound directly to Bub2 and prevented binding of the GTPase Tem1 to Bub2. We propose that in anaphase the Cdc42-regulated Gic proteins trigger mitotic exit by interfering with Bfa1-Bub2 GTPase-activating protein function.


Assuntos
Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Genótipo , Homeostase , Modelos Biológicos , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
11.
FEBS J ; 276(24): 7253-64, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20050180

RESUMO

The conserved Rho-type GTPase Cdc42p is a key regulator of signal transduction and polarity in eukaryotic cells. In the yeast Saccharomyces cerevisiae, Cdc42p promotes polarized growth through the p21-activated kinases Ste20p and Cla4p. Previously, we demonstrated that Ste20p forms a complex with Erg4p, Cbr1p and Ncp1p, which all catalyze important steps in sterol biosynthesis. CLA4 interacts genetically with ERG4 and NCP1. Furthermore, Erg4p, Ncp1p and Cbr1p play important roles in cell polarization during vegetative growth, mating and filamentation. As Ste20p and Cla4p are involved in these processes it seems likely that sterol biosynthetic enzymes and p21-activated kinases act in related pathways. Here, we demonstrate that the deletion of either STE20 or CLA4 results in increased levels of sterols. In addition, higher concentrations of steryl esters, the storage form of sterols, were observed in cla4Delta cells. CLA4 expression from a multicopy plasmid reduces enzyme activity of Are2p, the major steryl ester synthase, under aerobic conditions. Altogether, our data suggest that Ste20p and Cla4p may function as negative modulators of sterol biosynthesis. Moreover, Cla4p has a negative effect on steryl ester formation. As sterol homeostasis is crucial for cell polarization, Ste20p and Cla4p may regulate cell polarity in part through the modulation of sterol homeostasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Esteróis/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/fisiologia , Polaridade Celular/efeitos dos fármacos , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esterol O-Aciltransferase/fisiologia
12.
Mol Biol Cell ; 20(22): 4826-37, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19793923

RESUMO

In Saccharomyces cerevisiae, the Rho-type GTPase Cdc42 regulates polarized growth through its effectors, including the p21-activated kinases (PAKs) Ste20, Cla4, and Skm1. Previously, we demonstrated that Ste20 interacts with several proteins involved in sterol synthesis that are crucial for cell polarization. Under anaerobic conditions, sterols cannot be synthesized and need to be imported into cells. Here, we show that Ste20, Cla4, and Skm1 form a complex with Sut1, a transcriptional regulator that promotes sterol uptake. All three PAKs can translocate into the nucleus and down-regulate the expression of genes involved in sterol uptake, including the Sut1 targets AUS1 and DAN1 by a novel mechanism. Consistently, deletion of either STE20, CLA4, or SKM1 results in an increased sterol influx and PAK overexpression inhibits sterol uptake. For Ste20, we demonstrate that the down-regulation of gene expression requires nuclear localization and kinase activity of Ste20. Furthermore, the Ste20-mediated control of expression of sterol uptake genes depends on SUT1 but is independent of a mitogen-activated protein kinase signaling cascade. Together, these observations suggest that PAKs translocate into the nucleus, where they modulate expression of sterol uptake genes via Sut1, thereby controlling sterol homeostasis.


Assuntos
Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Esteróis/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Regulação para Baixo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Sinais de Localização Nuclear , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética
13.
Mol Biol Cell ; 19(7): 2885-96, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18417612

RESUMO

The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3beta homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Inibidores de Dissociação do Nucleotídeo Guanina/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Ciclo Celular , Membrana Celular/metabolismo , Polaridade Celular , Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/química
14.
J Cell Sci ; 120(Pt 20): 3613-24, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17895367

RESUMO

The Saccharomyces cerevisiae p21-activated kinase (PAK) Ste20 regulates various aspects of cell polarity during vegetative growth, mating and filamentous growth. To gain further insight into the mechanisms of Ste20 action, we screened for interactors of Ste20 using the split-ubiquitin system. Among the identified proteins were Erg4, Cbr1 and Ncp1, which are all involved in sterol biosynthesis. The interaction between Ste20 and Erg4, as well as between Ste20 and Cbr1, was confirmed by pull-down experiments. Deletion of either ERG4 or NCP1 resulted in various polarity defects, indicating a role for these proteins in bud site selection, apical bud growth, cell wall assembly, mating and invasive growth. Interestingly, Erg4 was required for the polarized localization of Ste20 during mating. Lack of CBR1 produced no detectable phenotype, whereas the deletion of CBR1 in the absence of NCP1 was lethal. Using a conditional lethal mutant we demonstrate that both proteins have overlapping functions in bud morphology.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteróis/biossíntese , Actinas/metabolismo , Polaridade Celular , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase Quinases , Oxirredutases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
15.
EMBO J ; 21(18): 4851-62, 2002 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-12234925

RESUMO

The budding yeast mitotic exit network (MEN) is a signal transduction cascade that controls exit from mitosis by facilitating the release of the cell cycle phosphatase Cdc14 from the nucleolus. The G protein Tem1 regulates MEN activity. The Tem1 guanine nucleotide exchange factor (GEF) Lte1 associates with the cortex of the bud and activates the MEN upon the formation of an anaphase spindle. Thus, the cell cortex has an important but ill-defined role in MEN regulation. Here, we describe a network of conserved cortical cell polarity proteins that have key roles in mitotic exit. The Rho-like GTPase Cdc42, its GEF Cdc24 and its effector Cla4 [a member of the p21-activated kinases (PAKs)] control the initial binding and activation of Lte1 to the bud cortex. Moreover, Cdc24, Cdc42 and Ste20, another PAK, probably function parallel to Lte1 in facilitating mitotic exit. Finally, the cell polarity proteins Kel1 and Kel2 are present in complexes with both Lte1 and Tem1, and negatively regulate mitotic exit.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Proteínas Fúngicas/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Mitose/fisiologia , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/fisiologia , Substâncias Macromoleculares , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA