Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nature ; 562(7728): 552-556, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30297800

RESUMO

Topological insulators-materials that are insulating in the bulk but allow electrons to flow on their surface-are striking examples of materials in which topological invariants are manifested in robustness against perturbations such as defects and disorder1. Their most prominent feature is the emergence of edge states at the boundary between areas with different topological properties. The observable physical effect is unidirectional robust transport of these edge states. Topological insulators were originally observed in the integer quantum Hall effect2 (in which conductance is quantized in a strong magnetic field) and subsequently suggested3-5 and observed6 to exist without a magnetic field, by virtue of other effects such as strong spin-orbit interaction. These were systems of correlated electrons. During the past decade, the concepts of topological physics have been introduced into other fields, including microwaves7,8, photonic systems9,10, cold atoms11,12, acoustics13,14 and even mechanics15. Recently, topological insulators were suggested to be possible in exciton-polariton systems16-18 organized as honeycomb (graphene-like) lattices, under the influence of a magnetic field. Exciton-polaritons are part-light, part-matter quasiparticles that emerge from strong coupling of quantum-well excitons and cavity photons19. Accordingly, the predicted topological effects differ from all those demonstrated thus far. Here we demonstrate experimentally an exciton-polariton topological insulator. Our lattice of coupled semiconductor microcavities is excited non-resonantly by a laser, and an applied magnetic field leads to the unidirectional flow of a polariton wavepacket around the edge of the array. This chiral edge mode is populated by a polariton condensation mechanism. We use scanning imaging techniques in real space and Fourier space to measure photoluminescence and thus visualize the mode as it propagates. We demonstrate that the topological edge mode goes around defects, and that its propagation direction can be reversed by inverting the applied magnetic field. Our exciton-polariton topological insulator paves the way for topological phenomena that involve light-matter interaction, amplification and the interaction of exciton-polaritons as a nonlinear many-body system.

2.
Opt Express ; 31(10): 16025-16034, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157690

RESUMO

We demonstrate monolithic high contrast gratings (MHCG) based on GaSb/AlAs0.08Sb0.92 epitaxial structures with sub-wavelength gratings enabling high reflection of unpolarized mid-infrared radiation at the wavelength range from 2.5 to 5 µm. We study the reflectivity wavelength dependence of MHCGs with ridge widths ranging from 220 to 984 nm and fixed 2.6 µm grating period and demonstrate that peak reflectivity of above 0.7 can be shifted from 3.0 to 4.3 µm for ridge widths from 220 to 984 nm, respectively. Maximum reflectivity of up to 0.9 at 4 µm can be achieved. The experiments are in good agreement with numerical simulations, confirming high process flexibility in terms of peak reflectivity and wavelength selection. MHCGs have hitherto been regarded as mirrors enabling high reflection of selected light polarization. With this work, we show that thoughtfully designed MHCG yields high reflectivity for both orthogonal polarizations simultaneously. Our experiment demonstrates that MHCGs are promising candidates to replace conventional mirrors like distributed Bragg reflectors to realize resonator based optical and optoelectronic devices such as resonant cavity enhanced light emitting diodes and resonant cavity enhanced photodetectors in the mid-infrared spectral region, for which epitaxial growth of distributed Bragg reflectors is challenging.

3.
Phys Rev Lett ; 131(16): 166901, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925701

RESUMO

Two-photon resonant excitation of the biexciton-exciton cascade in a quantum dot generates highly polarization-entangled photon pairs in a near-deterministic way. However, the ultimate level of achievable entanglement is still debated. Here, we observe the impact of the laser-induced ac-Stark effect on the quantum dot emission spectra and on entanglement. For increasing pulse-duration-to-lifetime ratios and pump powers, decreasing values of concurrence are recorded. Nonetheless, additional contributions are still required to fully account for the observed below-unity concurrence.

4.
Opt Express ; 30(10): 17070-17079, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221537

RESUMO

Optical trapping has been proven to be an effective method of separating exciton-polariton condensates from the incoherent high-energy excitonic reservoir located at the pumping laser position. This technique has significantly improved the coherent properties of exciton-polariton condensates, when compared to a quasi-homogeneous spot excitation scheme. Here, we compare two experimental methods on a sample, where a single spot excitation experiment allowed us only to observe photonic lasing in the weak coupling regime. In contrast, the ring-shaped excitation resulted in the two-threshold behavior, where an exciton-polariton condensate manifests itself at the first and photon lasing at the second threshold. Both lasing regimes are trapped in an optical potential created by the pump. We interpret the origin of this confining potential in terms of repulsive interactions of polaritons with the reservoir at the first threshold and as a result of the excessive free-carrier induced refractive index change of the microcavity at the second threshold. This observation offers a way to achieve multiple phases of photonic condensates in samples, e.g., containing novel materials as an active layer, where two-threshold behavior is impossible to achieve with a single excitation spot.

5.
Phys Rev Lett ; 126(7): 075302, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666454

RESUMO

We report on novel exciton-polariton routing devices created to study and purposely guide light-matter particles in their condensate phase. In a codirectional coupling device, two waveguides are connected by a partially etched section that facilitates tunable coupling of the adjacent channels. This evanescent coupling of the two macroscopic wave functions in each waveguide reveals itself in real space oscillations of the condensate. This Josephson-like oscillation has only been observed in coupled polariton traps so far. Here, we report on a similar coupling behavior in a controllable, propagative waveguide-based design. By controlling the gap width, channel length, or propagation energy, the exit port of the polariton flow can be chosen. This codirectional polariton device is a passive and scalable coupler element that can serve in compact, next generation logic architectures.

6.
Nature ; 526(7574): 554-8, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26458102

RESUMO

Exciton-polaritons are hybrid light-matter quasiparticles formed by strongly interacting photons and excitons (electron-hole pairs) in semiconductor microcavities. They have emerged as a robust solid-state platform for next-generation optoelectronic applications as well as for fundamental studies of quantum many-body physics. Importantly, exciton-polaritons are a profoundly open (that is, non-Hermitian) quantum system, which requires constant pumping of energy and continuously decays, releasing coherent radiation. Thus, the exciton-polaritons always exist in a balanced potential landscape of gain and loss. However, the inherent non-Hermitian nature of this potential has so far been largely ignored in exciton-polariton physics. Here we demonstrate that non-Hermiticity dramatically modifies the structure of modes and spectral degeneracies in exciton-polariton systems, and, therefore, will affect their quantum transport, localization and dynamical properties. Using a spatially structured optical pump, we create a chaotic exciton-polariton billiard--a two-dimensional area enclosed by a curved potential barrier. Eigenmodes of this billiard exhibit multiple non-Hermitian spectral degeneracies, known as exceptional points. Such points can cause remarkable wave phenomena, such as unidirectional transport, anomalous lasing/absorption and chiral modes. By varying parameters of the billiard, we observe crossing and anti-crossing of energy levels and reveal the non-trivial topological modal structure exclusive to non-Hermitian systems. We also observe mode switching and a topological Berry phase for a parameter loop encircling the exceptional point. Our findings pave the way to studies of non-Hermitian quantum dynamics of exciton-polaritons, which may uncover novel operating principles for polariton-based devices.

7.
Opt Express ; 28(13): 18649-18657, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672161

RESUMO

The large oscillator strength of excitons in transition metal dichalcogenide layers facilitates the formation of exciton-polariton resonances for monolayers and van-der-Waals heterostructures embedded in optical microcavities. Here, we show, that locally changing the number of layers in a WSe2/hBN/WSe2 van-der-Waals heterostructure embedded in a monolithic, high-quality-factor cavity gives rise to a local variation of the coupling strength. This effect yields a polaritonic stair case potential, which we demonstrate at room temperature. Our result paves the way towards engineering local polaritonic potentials at length scales down to atomically sharp interfaces, based on purely modifying its real part contribution via the coherent light-matter coupling strength g.

8.
Phys Rev Lett ; 122(4): 047403, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768323

RESUMO

Dark excitons are of fundamental importance for a wide variety of processes in semiconductors but are difficult to investigate using optical techniques due to their weak interaction with light fields. We reveal and characterize dark excitons nonresonantly injected into a semiconductor microcavity structure containing InGaAs/GaAs quantum wells by a gated train of eight 100 fs pulses separated by 13 ns by monitoring their interactions with the bright lower polariton mode. We find a surprisingly long dark exciton lifetime of more than 20 ns, which is longer than the time delay between two consecutive pulses. This creates a memory effect that we clearly observe through the variation of the time-resolved transmission signal. We propose a rate equation model that provides a quantitative agreement with the experimental data.

9.
Phys Rev Lett ; 120(1): 017401, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350948

RESUMO

We study the influence of spatial confinement on the second-order temporal coherence of the emission from a semiconductor microcavity in the strong coupling regime. The confinement, provided by etched micropillars, has a favorable impact on the temporal coherence of solid state quasicondensates that evolve in our device above threshold. By fitting the experimental data with a microscopic quantum theory based on a quantum jump approach, we scrutinize the influence of pump power and confinement and find that phonon-mediated transitions are enhanced in the case of a confined structure, in which the modes split into a discrete set. By increasing the pump power beyond the condensation threshold, temporal coherence significantly improves in devices with increased spatial confinement, as revealed in the transition from thermal to coherent statistics of the emitted light.

10.
Phys Rev Lett ; 121(22): 225302, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547627

RESUMO

We demonstrate, experimentally and theoretically, controlled loading of an exciton-polariton vortex chain into a 1D array of trapping potentials. Switching between two types of vortex chains, with topological charges of the same or alternating signs, is achieved by appropriately shaping an off-resonant pump beam that drives the system to the regime of bosonic condensation. In analogy to spin chains, these vortex sequences realize either a "ferromagnetic" or an "antiferromagnetic" order, whereby the role of spin is played by the orbital angular momentum. The ferromagnetic ordering of vortices is associated with the formation of a persistent chiral current. Our results pave the way for the controlled creation of nontrivial distributions of orbital angular momentum and topological order in a periodic exciton-polariton system.

11.
Phys Rev Lett ; 121(4): 047401, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095927

RESUMO

We measure the full photon-number distribution emitted from a Bose condensate of microcavity exciton polaritons confined in a micropillar cavity. The statistics are acquired by means of a photon-number-resolving transition edge sensor. We directly observe that the photon-number distribution evolves with the nonresonant optical excitation power from geometric to quasi-Poissonian statistics, which is canonical for a transition from a thermal to a coherent state. Moreover, the photon-number distribution allows one to evaluate the higher-order photon correlations, shedding further light on the coherence formation and phase transition of the polariton condensate. The experimental data are analyzed in terms of thermal-coherent states, which gives direct access to the thermal and coherent fraction from the measured distributions. These results pave the way for a full understanding of the contribution of interactions in light-matter condensates in the coherence buildup at threshold.

12.
Phys Rev Lett ; 120(23): 230502, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932715

RESUMO

Boson sampling is a well-defined task that is strongly believed to be intractable for classical computers, but can be efficiently solved by a specific quantum simulator. However, an outstanding problem for large-scale experimental boson sampling is the scalability. Here we report an experiment on boson sampling with photon loss, and demonstrate that boson sampling with a few photons lost can increase the sampling rate. Our experiment uses a quantum-dot-micropillar single-photon source demultiplexed into up to seven input ports of a 16×16 mode ultralow-loss photonic circuit, and we detect three-, four- and fivefold coincidence counts. We implement and validate lossy boson sampling with one and two photons lost, and obtain sampling rates of 187, 13.6, and 0.78 kHz for five-, six-, and seven-photon boson sampling with two photons lost, which is 9.4, 13.9, and 18.0 times faster than the standard boson sampling, respectively. Our experiment shows an approach to significantly enhance the sampling rate of multiphoton boson sampling.

13.
Nano Lett ; 17(4): 2273-2279, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28296417

RESUMO

Electronic circuits composed of one or more elements with inherent memory, that is, memristors, memcapacitors, and meminductors, offer lower circuit complexity and enhanced functionality for certain computational tasks. Networks of these elements are proposed for novel computational paradigms that rely on information processing and storage on the same physical platform. We show a nanoscaled memdevice able to act as an electronic analogue of tipping buckets that allows reducing the dimensionality and complexity of a sensing problem by transforming it into a counting problem. The device offers a well adjustable, tunable, and reliable periodic reset that is controlled by the amounts of transferred quantum dot charges per gate voltage sweep. When subjected to periodic voltage sweeps, the quantum dot (bucket) may require up to several sweeps before a rapid full discharge occurs thus displaying period doubling, period tripling, and so on between self-governing reset operations.

14.
Rep Prog Phys ; 80(1): 016503, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27841166

RESUMO

Exciton-polaritons in semiconductor microcavities have become a model system for the studies of dynamical Bose-Einstein condensation, macroscopic coherence, many-body effects, nonclassical states of light and matter, and possibly quantum phase transitions in a solid state. These low-mass bosonic quasiparticles can condense at comparatively high temperatures up to 300 K, and preserve the fundamental properties of the condensate, such as coherence in space and time domain, even when they are out of equilibrium with the environment. Although the presence of a confining potential is not strictly necessary in order to observe Bose-Einstein condensation, engineering of the polariton confinement is a key to controlling, shaping, and directing the flow of polaritons. Prototype polariton-based optoelectronic devices rely on ultrafast photon-like velocities and strong nonlinearities exhibited by polaritons, as well as on their tailored confinement. Nanotechnology provides several pathways to achieving polariton confinement, and the specific features and advantages of different methods are discussed in this review. Being hybrid exciton-photon quasiparticles, polaritons can be trapped via their excitonic as well as photonic component, which leads to a wide choice of highly complementary trapping techniques. Here, we highlight the almost free choice of the confinement strengths and trapping geometries that provide powerful means for control and manipulation of the polariton systems both in the semi-classical and quantum regimes. Furthermore, the possibilities to observe effects of the polariton blockade, Mott insulator physics, and population of higher-order energy bands in sophisticated lattice potentials are discussed. Observation of such effects could lead to realization of novel polaritonic non-classical light sources and quantum simulators.

15.
Opt Express ; 25(20): 24816-24826, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041294

RESUMO

We report a systematic study of the temperature and excitation density behavior of an AlAs/AlGaAs, vertically emitting microcavity with embedded ternary Al0.20Ga0.80As/AlAs quantum wells in the strong coupling regime. Temperature-dependent photoluminescence measurements of the bare quantum wells indicate a crossover from the type-II indirect to the type-I direct transition. The resulting mixing of quantum well and barrier ground states in the conduction band leads to an estimated exciton binding energy systematically exceeding 25 meV. The formation of exciton-polaritons is evidenced in our quantum well microcavity via reflection measurements with Rabi splittings ranging from (13.93 ± 0.15) meV at low temperature (30 K) to (8.58 ± 0.40) meV at room temperature (300 K). Furthermore, the feasibility of polariton laser operation is demonstrated under non-resonant optical excitation conditions at 20 K and emission around 1.835 eV.

16.
Opt Lett ; 42(11): 2102-2105, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569855

RESUMO

Bragg reflection waveguides emitting broadband parametric downconversion (PDC) have been proven to be well suited for the on-chip generation of polarization entanglement in a straightforward fashion [Sci. Rep.3, 2314 (2013)SRWSDA2045-232210.1038/srep02314]. Here, we investigate how the properties of the created states can be modified by controlling the relative temporal delay between the pair of photons created via PDC. Our results offer an easily accessible approach for changing the coherence of the polarization entanglement, in other words, to tune the phase of the off-diagonal elements of the density matrix. Furthermore, we provide valuable insight into the engineering of these states directly at the source.

17.
Phys Rev Lett ; 119(2): 027401, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753330

RESUMO

The dipole coupling strength g between cavity photons and quantum well excitons determines the regime of light matter coupling in quantum well microcavities. In the strong coupling regime, a reversible energy transfer between exciton and cavity photon takes place, which leads to the formation of hybrid polaritonic resonances. If the coupling is further increased, a hybridization of different single exciton states emerges, which is referred to as the very strong coupling regime. In semiconductor quantum wells such a regime is predicted to manifest as a photon-mediated electron-hole coupling leading to different excitonic wave functions for the two polaritonic branches when the ratio of the coupling strength to exciton binding energy g/E_{B} approaches unity. Here, we verify experimentally the existence of this regime in magneto-optical measurements on a microcavity characterized by g/E_{B}≈0.64, showing that the average electron-hole separation of the upper polariton is significantly increased compared to the bare quantum well exciton Bohr radius. This yields a diamagnetic shift around 0 detuning that exceeds the shift of the lower polariton by 1 order of magnitude and the bare quantum well exciton diamagnetic shift by a factor of 2. The lower polariton exhibits a diamagnetic shift smaller than expected from the coupling of a rigid exciton to the cavity mode, which suggests more tightly bound electron-hole pairs than in the bare quantum well.

18.
Phys Rev Lett ; 118(25): 257402, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696738

RESUMO

Multiphoton entangled states such as "N00N states" have attracted a lot of attention because of their possible application in high-precision, quantum enhanced phase determination. So far, N00N states have been generated in spontaneous parametric down-conversion processes and by mixing quantum and classical light on a beam splitter. Here, in contrast, we demonstrate superresolving phase measurements based on two-photon N00N states generated by quantum dot single-photon sources making use of the Hong-Ou-Mandel effect on a beam splitter. By means of pulsed resonance fluorescence of a charged exciton state, we achieve, in postselection, a quantum enhanced improvement of the precision in phase uncertainty, higher than prescribed by the standard quantum limit. An analytical description of the measurement scheme is provided, reflecting requirements, capability, and restraints of single-photon emitters in optical quantum metrology. Our results point toward the realization of a real-world quantum sensor in the near future.

19.
Phys Rev Lett ; 118(13): 133901, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28409974

RESUMO

A picosecond acoustic pulse can be used to control the lasing emission from semiconductor nanostructures by shifting their electronic transitions. When the active medium, here an ensemble of (In,Ga)As quantum dots, is shifted into or out of resonance with the cavity mode, a large enhancement or suppression of the lasing emission can dynamically be achieved. Most interesting, even in the case when gain medium and cavity mode are in resonance, we observe an enhancement of the lasing due to shaking by coherent phonons. In order to understand the interactions of the nonlinearly coupled photon-exciton-phonon subsystems, we develop a semiclassical model and find an excellent agreement between theory and experiment.

20.
Phys Rev Lett ; 118(19): 190501, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28548532

RESUMO

Boson sampling is a problem strongly believed to be intractable for classical computers, but can be naturally solved on a specialized photonic quantum simulator. Here, we implement the first time-bin-encoded boson sampling using a highly indistinguishable (∼94%) single-photon source based on a single quantum-dot-micropillar device. The protocol requires only one single-photon source, two detectors, and a loop-based interferometer for an arbitrary number of photons. The single-photon pulse train is time-bin encoded and deterministically injected into an electrically programmable multimode network. The observed three- and four-photon boson sampling rates are 18.8 and 0.2 Hz, respectively, which are more than 100 times faster than previous experiments based on parametric down-conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA