Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Pharm ; 19(6): 1795-1802, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266720

RESUMO

Human skin equivalents emerged as novel tools in preclinical dermatological research. It is being claimed that they may bridge the translational gap between preclinical and clinical research, yet only a few studies have investigated their suitability for preclinical drug testing so far. Therefore, we investigated if inflammatory skin equivalents, which emulate hallmarks of atopic dermatitis (AD), are suitable to assess the anti-inflammatory effects of dexamethasone (DXM) in a cream formulation or loaded onto dendritic core-multishell nanoparticles. Topical DXM application resulted in significantly decreased expression of the proinflammatory cytokine TSLP, increased expression of the skin barrier protein involucrin, and facilitated glucocorticoid receptor translocation in a dose-dependent manner. Further, DXM treatment inhibited gene expression of extracellular matrix components, potentially indicative of the known skin atrophy-inducing side effects of glucocorticoids. Overall, we were able to successfully assess the anti-inflammatory effects of DXM and the superiority of the nanoparticle formulation. Nevertheless the identification of robust readout parameters proved challenging and requires careful study design.


Assuntos
Anti-Inflamatórios , Nanopartículas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Humanos , Pele/metabolismo , Absorção Cutânea
2.
Proc Natl Acad Sci U S A ; 114(14): 3631-3636, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320932

RESUMO

Based on experimental concentration depth profiles of the antiinflammatory drug dexamethasone in human skin, we model the time-dependent drug penetration by the 1D general diffusion equation that accounts for spatial variations in the diffusivity and free energy. For this, we numerically invert the diffusion equation and thereby obtain the diffusivity and the free-energy profiles of the drug as a function of skin depth without further model assumptions. As the only input, drug concentration profiles derived from X-ray microscopy at three consecutive times are used. For dexamethasone, skin barrier function is shown to rely on the combination of a substantially reduced drug diffusivity in the stratum corneum (the outermost epidermal layer), dominant at short times, and a pronounced free-energy barrier at the transition from the epidermis to the dermis underneath, which determines the drug distribution in the long-time limit. Our modeling approach, which is generally applicable to all kinds of barriers and diffusors, allows us to disentangle diffusivity from free-energetic effects. Thereby we can predict short-time drug penetration, where experimental measurements are not feasible, as well as long-time permeation, where ex vivo samples deteriorate, and thus span the entire timescales of biological barrier functioning.


Assuntos
Dexametasona/administração & dosagem , Epiderme/metabolismo , Administração Cutânea , Dexametasona/farmacocinética , Difusão , Humanos , Microscopia , Modelos Químicos , Absorção Cutânea , Raios X
3.
Nanomedicine ; 13(1): 317-327, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27697619

RESUMO

Inflammatory disorders of the skin pose particular therapeutic challenges due to complex structural and functional alterations of the skin barrier. Penetration of several anti-inflammatory drugs is particularly problematic in psoriasis, a common dermatitis condition with epidermal hyperplasia and hyperkeratosis. Here, we tested in vivo dermal penetration and biological effects of dendritic core-multishell-nanocarriers (CMS) in a murine skin model of psoriasis and compared it to healthy skin. In both groups, CMS exclusively localized to the stratum corneum of the epidermis with only very sporadic uptake by Langerhans cells. Furthermore, penetration into the viable epidermis of nile red as a model for lipophilic compounds was enhanced by CMS. CMS proved fully biocompatible in several in vitro assays and on normal and psoriatic mouse skin. The observations support the concept of CMS as promising candidates for drug delivery in inflammatory hyperkeratotic skin disorders in vivo.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Psoríase/tratamento farmacológico , Absorção Cutânea , Administração Cutânea , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
Eur J Pharm Biopharm ; 115: 122-130, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28189623

RESUMO

Controlled delivery of corticosteroids using nanoparticles to the skin and corneal epithelium may reduce their side effects and maximize treatment effectiveness. Dexamethasone-loaded ethyl cellulose, Eudragit® RS and ethyl cellulose/Eudragit® RS nanoparticles were prepared by the solvent evaporation method. Dexamethasone release from the polymeric nanoparticles was investigated in vitro using Franz diffusion cells. Drug penetration was also assessed ex vivo using excised human skin. Nanoparticle toxicity was determined by MTT and H2DCFDA assays. Eudragit® RS nanoparticles were smaller and positively charged but had a lower dexamethasone loading capacity (0.3-0.7%) than ethyl cellulose nanoparticles (1.4-2.2%). By blending the two polymers (1:1), small (105nm), positively charged (+37mV) nanoparticles with sufficient dexamethasone loading (1.3%) were obtained. Dexamethasone release and penetration significantly decreased with decreasing drug to polymer ratio and increased when Eudragit® RS was blended with ethyl cellulose. Ex vivo, drug release and penetration from the nanoparticles was slower than a conventional cream. The nanoparticles bear no toxicity potentials except ethyl cellulose nanoparticles had ROS generation potential at high concentration. In conclusion, the nanoparticles showed great potential to control the release and penetration of corticosteroids on the skin and mucus membrane and maximize treatment effectiveness.


Assuntos
Corticosteroides/química , Preparações de Ação Retardada/química , Epitélio Corneano/efeitos dos fármacos , Nanopartículas/química , Polímeros/química , Pele/efeitos dos fármacos , Resinas Acrílicas/química , Celulose/análogos & derivados , Celulose/química , Química Farmacêutica/métodos , Dexametasona/química , Difusão , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/fisiologia , Feminino , Humanos , Solubilidade
5.
Eur J Pharm Biopharm ; 116: 31-37, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28012989

RESUMO

Bacterial biosurfactants are nature's strategy to solubilize and ingest hydrophobic molecules and nutrients using a fully biodegradable transport system. Eight structurally defined rhamnolipids were selected and investigated as potential drug carrier systems. Depending on the molecular structures defining their packing parameters, the rhamnolipids were found to form spherical nanoparticles with precisely defined average sizes between 5 and 100nm, low polydispersity, and stability over a broad concentration range as revealed from dynamic light scattering and electron microscopy. As rhamnolipids were tolerated well by the human skin, rhamnolipid nanoparticles were considered for dermal drug delivery and thus loaded with hydrophobic drug molecules. Using the drug model, Nile red, dexamethasone, and tacrolimus nanoparticles charged with up to 30% drug loading (w/w) were obtained. Nanoparticles loaded with Nile red were investigated for dermal drug delivery in a Franz cell using human skin. Fluoresence microscopy of skin slices indicated the efficient penetration of the model drug into human skin, both into the stratum corneum and although to a lesser extent into the lower epidermis. Rhamnolipid nanocarriers were found to be non-toxic to primary human fibroblasts in a proliferation assay and thus are considered candidates for the dermal delivery of drugs.


Assuntos
Dexametasona/química , Glicolipídeos/administração & dosagem , Glicolipídeos/química , Nanopartículas/química , Oxazinas/química , Pele/metabolismo , Tacrolimo/química , Administração Cutânea , Química Farmacêutica/métodos , Dexametasona/administração & dosagem , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/administração & dosagem , Oxazinas/administração & dosagem , Tamanho da Partícula , Absorção Cutânea/efeitos dos fármacos , Tacrolimo/administração & dosagem
6.
J Invest Dermatol ; 136(3): 631-639, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27015451

RESUMO

Atopic dermatitis is a chronic skin condition with complex etiology. It is characterized by skin barrier defects and T helper type 2 (Th2)-polarized inflammation. Although mutations in the filaggrin gene are known to be prominent genetic risk factors for the development of atopic dermatitis, the interdependency between these and an altered cytokine milieu is not fully understood. In this study, we evaluated the direct effects of filaggrin deficiency on the cornified envelope, tight junction proteins, and innate immune response, and report the effects of Th2 cytokines in normal and filaggrin-deficient skin equivalents. Supplementation with IL-4 and IL-13 led to distinct histologic changes and significantly increased skin surface pH, both of which were enhanced in filaggrin knockdown skin equivalents. We detected a compensatory up-regulation of involucrin and occludin in filaggrin-deficient skin that was dramatically disturbed when simultaneous inflammation occurred. Furthermore, we found that a lack of filaggrin triggered an up-regulation of human ?-defensin 2 via an unknown mechanism, which was abolished by Th2 cytokine supplementation. Taken together, these results indicate that defects in the epidermal barrier, skin permeability, and cutaneous innate immune response are not primarily linked to filaggrin deficiency but are rather secondarily induced by Th2 inflammation.


Assuntos
Citocinas/metabolismo , Dermatite Atópica/imunologia , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Junções Íntimas/metabolismo , beta-Defensinas/metabolismo , Biópsia por Agulha , Células Cultivadas , Dermatite Atópica/patologia , Epiderme/efeitos dos fármacos , Epiderme/patologia , Proteínas Filagrinas , Humanos , Imuno-Histoquímica , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Valores de Referência , Células Th2/imunologia , Células Th2/metabolismo , beta-Defensinas/efeitos dos fármacos
7.
J Control Release ; 242: 42-49, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27374627

RESUMO

The topical application of drugs allows for a local application in skin disease and can reduce side effects. Here we present biodegradable core-multishell (CMS) nanocarriers which are composed of a hyperbranched polyglycerol core functionalized with diblock copolymers consisting of polycaprolactone (PCL) and poly(ethylene glycol) (mPEG) as the outer shell. The anti-inflammatory drug Dexamethasone (Dexa) was loaded into these CMS nanocarriers. DLS results suggested that Dexa loaded nanoparticles mostly act as a unimolecular carrier system. With longer PCL segments, a better transport capacity is observed. In vitro skin permeation studies showed that CMS nanocarriers could improve the Nile red penetration through the skin by up to 7 times, compared to a conventional cream formulation. Interestingly, covalently FITC-labeled CMS nanocarriers remain in the stratum corneum layer. This suggests the enhancement is due to the release of cargo after being transported into the stratum corneum by the CMS nanocarriers. In addition, the hPG-PCL-mPEG CMS nanocarriers exhibited good stability, low cytotoxicity, and their production can easily be scaled up, which makes them promising nanocarriers for topical drug delivery.


Assuntos
Dexametasona/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas , Administração Cutânea , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/toxicidade , Química Farmacêutica/métodos , Dexametasona/farmacocinética , Dexametasona/toxicidade , Técnicas In Vitro , Poliésteres/química , Polietilenoglicóis/química , Pele/metabolismo , Absorção Cutânea
8.
J Control Release ; 242: 50-63, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27349353

RESUMO

Drug loaded dendritic core-multishell (CMS) nanocarriers are of especial interest for the treatment of skin diseases, owing to their striking dermal delivery efficiencies following topical applications. CMS nanocarriers are composed of a polyglycerol core, connected by amide-bonds to an inner alkyl shell and an outer methoxy poly(ethylene glycol) shell. Since topically applied nanocarriers are subjected to biodegradation, the application of conventional amide-based CMS nanocarriers (10-A-18-350) has been limited by the potential production of toxic polyglycerol amines. To circumvent this issue, three tailored ester-based CMS nanocarriers (10-E-12-350, 10-E-15-350, 10-E-18-350) of varying inner alkyl chain length were synthesized and comprehensively characterized in terms of particle size, drug loading, biodegradation and dermal drug delivery efficiency. Dexamethasone (DXM), a potent drug widely used for the treatment of inflammatory skin diseases, was chosen as a therapeutically relevant test compound for the present study. Ester- and amide-based CMS nanocarriers delivered DXM more efficiently into human skin than a commercially available DXM cream. Subsequent in vitro and in vivo toxicity studies identified CMS (10-E-15-350) as the most biocompatible carrier system. The anti-inflammatory potency of DXM-loaded CMS (10-E-15-350) nanocarriers was assessed in TNFα supplemented skin models, where a significant reduction of the pro-inflammatory cytokine IL-8 was seen, with markedly greater efficacy than commercial DXM cream. In summary, we report the rational design and characterization of tailored, biodegradable, ester-based CMS nanocarriers, and their subsequent stepwise screening for biocompatibility, dermal delivery efficiency and therapeutic efficacy in a top-down approach yielding the best carrier system for topical applications.


Assuntos
Dendrímeros/química , Dexametasona/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Administração Cutânea , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/toxicidade , Dexametasona/farmacocinética , Dexametasona/toxicidade , Modelos Animais de Doenças , Portadores de Fármacos/química , Feminino , Glicerol/química , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros/química , Ratos , Ratos Sprague-Dawley , Pele/metabolismo , Absorção Cutânea , Dermatopatias/tratamento farmacológico , Dermatopatias/patologia
9.
J Control Release ; 242: 25-34, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27394682

RESUMO

Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-term ex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin.


Assuntos
Anti-Inflamatórios/administração & dosagem , Celulose/análogos & derivados , Dexametasona/administração & dosagem , Nanopartículas , Administração Cutânea , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Celulose/química , Citocinas/metabolismo , Dexametasona/farmacocinética , Dexametasona/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/farmacocinética , Glucocorticoides/farmacologia , Humanos , Microdiálise , Pele/metabolismo , Absorção Cutânea , Dermatopatias/metabolismo , Dodecilsulfato de Sódio/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA