Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Biol ; 221(Pt 23)2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30523043

RESUMO

Reliable estimates of field metabolic rates (FMRs) in wild animals are essential for quantifying their ecological roles, as well as for evaluating fitness consequences of anthropogenic disturbances. Yet, standard methods for measuring FMR are difficult to use on free-ranging cetaceans whose FMR may deviate substantially from scaling predictions using terrestrial mammals. Harbour porpoises (Phocoena phocoena) are among the smallest marine mammals, and yet they live in cold, high-latitude waters where their high surface-to-volume ratio suggests high FMRs to stay warm. However, published FMR estimates of harbour porpoises are contradictory, with some studies claiming high FMRs and others concluding that the energetic requirements of porpoises resemble those of similar-sized terrestrial mammals. Here, we address this controversy using data from a combination of captive and wild porpoises to estimate the FMR of wild porpoises. We show that FMRs of harbour porpoises are up to two times greater than for similar-sized terrestrial mammals, supporting the hypothesis that small, carnivorous marine mammals in cold water have elevated FMRs. Despite the potential cost of thermoregulation in colder water, harbour porpoise FMRs are stable over seasonally changing water temperatures. Varying heat loss seems to be managed via cyclical fluctuations in energy intake, which serve to build up a blubber layer that largely offsets the extra costs of thermoregulation during winter. Such high FMRs are consistent with the recently reported high feeding rates of wild porpoises and highlight concerns about the potential impact of human activities on individual fitness and population dynamics.


Assuntos
Metabolismo Basal , Phocoena/metabolismo , Tecido Adiposo , Animais , Composição Corporal , Regulação da Temperatura Corporal , Ingestão de Alimentos , Metabolismo Energético/fisiologia , Feminino , Masculino , Tecnologia de Sensoriamento Remoto , Taxa Respiratória/fisiologia , Estações do Ano
2.
Proc Biol Sci ; 279(1736): 2237-45, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22279169

RESUMO

Animals that use echolocation (biosonar) listen to acoustic signals with a large range of intensities, because echo levels vary with the fourth power of the animal's distance to the target. In man-made sonar, engineers apply automatic gain control to stabilize the echo energy levels, thereby rendering them independent of distance to the target. Both toothed whales and bats vary the level of their echolocation clicks to compensate for the distance-related energy loss. By monitoring the auditory brainstem response (ABR) during a psychophysical task, we found that a harbour porpoise (Phocoena phocoena), in addition to adjusting the sound level of the outgoing signals up to 5.4 dB, also reduces its ABR threshold by 6 dB when the target distance doubles. This self-induced threshold shift increases the dynamic range of the biosonar system and compensates for half of the variation of energy that is caused by changes in the distance to the target. In combination with an increased source level as a function of target range, this helps the porpoise to maintain a stable echo-evoked ABR amplitude irrespective of target range, and is therefore probably an important tool enabling porpoises to efficiently analyse and classify received echoes.


Assuntos
Percepção Auditiva/fisiologia , Ecolocação/fisiologia , Phocoena/fisiologia , Animais , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA