Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(22): 36915-36927, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017831

RESUMO

Ultrafast laser systems, such as optical parametric chirped pulse amplifiers (OPCPA), are complex tools. Optimizing laser performance for a given application is often plagued by intricate couplings between different output parameters, making simultaneous control of multiple pulse properties difficult. Here, we experimentally demonstrate an autonomous tuning procedure of a white-light seeded two-stage OPCPA using an evolutionary strategy to reliably reach an optimized working point. We use the data collected during the tuning procedure to calibrate a performance model of the laser system, which we then apply to stabilize the intricately coupled laser output energy and spectrum simultaneously. Our approach ensures reliable day-to-day operation at optimized working points without manual tuning. We demonstrate shot-to-shot energy stability of <0.18 % rms, in combination with <25 pm rms wavelength stability and <0.2 % rms bandwidth stability during multi-day operation.

2.
Opt Express ; 31(23): 37437-37451, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017872

RESUMO

Extreme heat loads on optics, in particular the final pulse compression gratings, are a major hurdle to overcome in the ongoing push towards high average power (kW) and high repetition rate (kHz) operation of terawatt-class Ti:sapphire lasers. Multilayer dielectric (MLD) diffraction gratings have been suggested as a potential alternative to traditionally gold-coated compressor gratings, which are plagued by high energy absorption in the top gold layer. However, to support the required bandwidth (and ultimately the desired pulse duration) with MLD gratings, the gratings have to be operated in an out-of-plane geometry near the Littrow angle. Here, we report on the design of an MLD-based out-of-plane test compressor and a matching custom stretcher. We present a full characterization of the MLD compressor, focusing on its spectral transmission and the significance of laser pulse polarization in the out-of-plane geometry. To demonstrate compression of 40 µJ pulses centered at 800 nm wavelength to 26 fs pulse duration, we use the compressor with an MLD and gold grating configuration, and fully characterize the compressed pulses. Extrapolating our results indicates that MLD-grating-based out-of-plane compressors can support near-transform-limited pulses with sub-30 fs duration and good quality, demonstrating the viability of this concept for kW-level ultrafast Ti:sapphire laser systems.

3.
Opt Express ; 30(3): 3404-3415, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209599

RESUMO

Ultrafast laser pulses featuring both high spatio-temporal beam quality and excellent energy stability are crucial for many applications. Here, we present a seed laser with high beam quality and energy stability, based on a collinear optical parametric chirped pulse amplification (OPCPA) stage, delivering 46 µJ pulses with a 25 fs Fourier limit at 1 kHz repetition rate. While saturation of the OPCPA stage is necessary for achieving the highest possible energy stability, it also leads to a degradation of the beam quality. Using simulations, we show that spectrally dependent, rotationally symmetric aberrations dominate the collinear OPCPA in saturation. We experimentally characterize these aberrations and then remove distinct spatial frequencies to greatly improve the spectral homogeneity of the beam quality, while keeping an excellent energy stability of 0.2 % rms measured over 70 hours.

4.
Phys Rev Lett ; 126(17): 174801, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988405

RESUMO

Applications of laser-plasma accelerators demand low energy spread beams and high-efficiency operation. Achieving both requires flattening the accelerating fields by controlled beam loading of the plasma wave. Here, we optimize the generation of an electron bunch via localized ionization injection, such that the combination of injected current profile and averaged acceleration dynamics results in optimal beam loading conditions. This enables the reproducible production of 1.2% rms energy spread bunches with 282 MeV and 44 pC at an estimated energy-transfer efficiency of ∼19%. We correlate shot-to-shot variations to reveal the phase space dynamics and train a neural network that predicts the beam quality as a function of the drive laser.

5.
Opt Express ; 17(10): 8253-63, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19434158

RESUMO

Damage of optical components due to laser irradiation reduces reliability and limits durability. Calcium fluoride (CaF(2)) is commonly used for deep UV laser optics because it shows a very low tendency of color center formation as, compared to other UV-X optical materials. Here, we report on the exterior damage of CaF(2) UV-X optics due to radiation with high pulse-energy densities (80 mJ/cm(2)) from an ArF laser. At such high energy densities, damage occurs on the external resonator side. The damage is generated by a partial alteration of the CaF(2) substrate to crystalline CaCO(3) (calcite). The decomposition of CaF(2) is mainly driven by photochemical processes in the presence of water vapor, which are induced by the UV-laser light and the elevated temperature within the beam profile.

6.
Opt Lett ; 34(24): 3815-7, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20016623

RESUMO

The exterior sides of calcium fluoride (CaF(2)) outcoupling mirrors are damaged by ArF laser light irradiation with high pulse-energy densities (80 mJ/cm(2)). The damage is generated by a partial alteration of the CaF(2) substrate to calcite. The CaF(2) decomposition is driven by photochemical processes due to the UV light and the presence of water vapor and is supported by elevated temperatures within the laser beam transmitting area. Small filaments act as starting points for the decomposition process, where kerogenous carbon and calcite can occur.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA