Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2303448120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487081

RESUMO

Cancer cells are commonly subjected to endoplasmic reticulum (ER) stress. To gain survival advantage, cancer cells exploit the adaptive aspects of the unfolded protein response such as upregulation of the ER luminal chaperone GRP78. The finding that when overexpressed, GRP78 can escape to other cellular compartments to gain new functions regulating homeostasis and tumorigenesis represents a paradigm shift. Here, toward deciphering the mechanisms whereby GRP78 knockdown suppresses EGFR transcription, we find that nuclear GRP78 is prominent in cancer and stressed cells and uncover a nuclear localization signal critical for its translocation and nuclear activity. Furthermore, nuclear GRP78 can regulate expression of genes and pathways, notably those important for cell migration and invasion, by interacting with and inhibiting the activity of the transcriptional repressor ID2. Our study reveals a mechanism for cancer cells to respond to ER stress via transcriptional regulation mediated by nuclear GRP78 to adopt an invasive phenotype.


Assuntos
Núcleo Celular , Chaperona BiP do Retículo Endoplasmático , Humanos , Carcinogênese , Movimento Celular , Transformação Celular Neoplásica
2.
Nature ; 575(7783): 519-522, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666702

RESUMO

Immunosuppression increases the risk of cancers that are associated with viral infection1. In particular, the risk of squamous cell carcinoma of the skin-which has been associated with beta human papillomavirus (ß-HPV) infection-is increased by more than 100-fold in immunosuppressed patients2-4. Previous studies have not established a causative role for HPVs in driving the development of skin cancer. Here we show that T cell immunity against commensal papillomaviruses suppresses skin cancer in immunocompetent hosts, and the loss of this immunity-rather than the oncogenic effect of HPVs-causes the markedly increased risk of skin cancer in immunosuppressed patients. To investigate the effects of papillomavirus on carcinogen-driven skin cancer, we colonized several strains of immunocompetent mice with mouse papillomavirus type 1 (MmuPV1)5. Mice with natural immunity against MmuPV1 after colonization and acquired immunity through the transfer of T cells from immune mice or by MmuPV1 vaccination were protected against skin carcinogenesis induced by chemicals or by ultraviolet radiation in a manner dependent on CD8+ T cells. RNA and DNA in situ hybridization probes for 25 commensal ß-HPVs revealed a significant reduction in viral activity and load in human skin cancer compared with the adjacent healthy skin, suggesting a strong immune selection against virus-positive malignant cells. Consistently, E7 peptides from ß-HPVs activated CD8+ T cells from unaffected human skin. Our findings reveal a beneficial role for commensal viruses and establish a foundation for immune-based approaches that could block the development of skin cancer by boosting immunity against the commensal HPVs present in all of our skin.


Assuntos
Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/prevenção & controle , Papillomaviridae/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/virologia , Simbiose , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinogênese/efeitos da radiação , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Feminino , Humanos , Hospedeiro Imunocomprometido/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Oncogenes , Papillomaviridae/genética , Papillomaviridae/patogenicidade , RNA Viral/análise , RNA Viral/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Raios Ultravioleta
3.
J Biol Chem ; 296: 100759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33965375

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 global pandemic, utilizes the host receptor angiotensin-converting enzyme 2 (ACE2) for viral entry. However, other host factors might also play important roles in SARS-CoV-2 infection, providing new directions for antiviral treatments. GRP78 is a stress-inducible chaperone important for entry and infectivity for many viruses. Recent molecular docking analyses revealed putative interaction between GRP78 and the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (SARS-2-S). Here we report that GRP78 can form a complex with SARS-2-S and ACE2 on the surface and at the perinuclear region typical of the endoplasmic reticulum in VeroE6-ACE2 cells and that the substrate-binding domain of GRP78 is critical for this interaction. In vitro binding studies further confirmed that GRP78 can directly bind to the RBD of SARS-2-S and ACE2. To investigate the role of GRP78 in this complex, we knocked down GRP78 in VeroE6-ACE2 cells. Loss of GRP78 markedly reduced cell surface ACE2 expression and led to activation of markers of the unfolded protein response. Treatment of lung epithelial cells with a humanized monoclonal antibody (hMAb159) selected for its safe clinical profile in preclinical models depleted cell surface GRP78 and reduced cell surface ACE2 expression, as well as SARS-2-S-driven viral entry and SARS-CoV-2 infection in vitro. Our data suggest that GRP78 is an important host auxiliary factor for SARS-CoV-2 entry and infection and a potential target to combat this novel pathogen and other viruses that utilize GRP78 in combination therapy.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Proteínas de Choque Térmico/genética , Interações Hospedeiro-Patógeno/genética , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Sítios de Ligação , Chlorocebus aethiops , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Humanos , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/metabolismo , Resposta a Proteínas não Dobradas , Células Vero
4.
Cell Mol Life Sci ; 78(12): 5179-5195, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33974094

RESUMO

Despite new advances on the functions of ER chaperones at the cell surface, the translocation mechanisms whereby these chaperones can escape from the ER to the cell surface are just emerging. Previously we reported that in many cancer types, upon ER stress, IRE1α binds to and triggers SRC activation resulting in KDEL receptor dispersion from the Golgi and suppression of retrograde transport. In this study, using a combination of molecular, biochemical, and imaging approaches, we discovered that in colon and lung cancer, upon ER stress, ER chaperones, such as GRP78 bypass the Golgi and unconventionally traffic to the cell surface via endosomal transport mediated by Rab GTPases (Rab4, 11 and 15). Such unconventional transport is driven by membrane fusion between ER-derived vesicles and endosomes requiring the v-SNARE BET1 and t-SNARE Syntaxin 13. Furthermore, GRP78 loading into ER-derived vesicles requires the co-chaperone DNAJC3 that is regulated by ER-stress induced PERK-AKT-mTOR signaling.


Assuntos
Membrana Celular/metabolismo , Neoplasias do Colo/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutagênese Sítio-Dirigida , Mutação , Transporte Proteico , Transdução de Sinais , Células Tumorais Cultivadas
5.
Anal Chem ; 93(24): 8459-8466, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34097379

RESUMO

With the increasing rise of antibiotic-resistant pathogens, a simple and rapid detection of antibiotic resistance gene (ARG) is crucial to mitigate the spreading of antibiotic resistance. DNA-binding zinc finger proteins (ZFPs) can be engineered to recognize specific double-stranded (ds) DNA sequences in ARG. Here, we designed a simple and rapid method to detect ARG in bacteria utilizing engineered ZFPs and 2D nanosheet graphene oxide (GO) as a sensing platform. Our approach relies on the on and off effect of fluorescence signal in the presence and absence of target ARG, respectively. By taking advantage of the unique quenching capability of GO due to its electronic property, quantum dot (QD)-labeled ZFPs are adsorbed onto the GO sheets, and their fluorescence signal is quenched by proximal GO sheets through fluorescence resonance energy transfer (FRET). In the presence of target DNA, ZFP binding to the target DNA induces dissociation from GO, thereby restoring the fluorescence signal. Our system detects target DNA through restoration of QD emission as the restored signal increases directly with target DNA concentrations. Engineered ZFPs were able to detect specific dsDNA of the tetracycline resistance gene tetM with high specificity after only 10 min incubation on our GO-based sensing system. Our sensing system employed one-step FRET-based ZFP and GO combined technology to enable rapid and quantitative detection of ARG, providing a limit of detection as low as 1 nM. This study demonstrated the application of GO in conjunction with engineered DNA-binding domains for the direct detection of dsDNA with great potential as a rapid and reliable screening and detecton method against the growing threat of antibiotic resistant bacteria.


Assuntos
Técnicas Biossensoriais , Grafite , Pontos Quânticos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Transferência Ressonante de Energia de Fluorescência , Óxidos , Dedos de Zinco
6.
Biomacromolecules ; 22(12): 5327-5338, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34807571

RESUMO

Rice husk is one of the most abundant biomass resources in the world, yet it is not effectively used. This study focuses on the sustainably rice-husk-extracted lignin, nano-lignin (n-Lignin), lignin-capped silver nanoparticles (LCSN), n-Lignin-capped silver nanoparticles (n-LCSN), and lignin-capped silica-silver nanoparticles (LCSSN), and using them for antibacterial activities. The final n-Lignin-based products had a sphere-like structure, of which the size varied between 50 and 80 nm. We found that while n-Lignin and lignin were less effective against Escherichia coli than against Staphylococcus aureus, n-Lignin/lignin-based hybrid materials, i.e., n-LCSN, LCSN, and LCSSN, were better against E. coli than against S. aureus. Interestingly, the antimicrobial behaviors of n-LCSNs could be further improved by decreasing the size of n-Lignin. Considering the facile, sustainable, and eco-friendly method that we have developed here, it is promising to use n-Lignin/lignin-based materials as highly efficient antimicrobials without environmental concerns.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Lignina/química , Lignina/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Dióxido de Silício , Prata/química , Prata/farmacologia , Staphylococcus aureus
7.
Proc Natl Acad Sci U S A ; 115(18): E4245-E4254, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654145

RESUMO

The discovery that endoplasmic reticulum (ER) luminal chaperones such as GRP78/BiP can escape to the cell surface upon ER stress where they regulate cell signaling, proliferation, apoptosis, and immunity represents a paradigm shift. Toward deciphering the mechanisms, we report here that, upon ER stress, IRE1α binds to and triggers tyrosine kinase SRC activation, leading to ASAP1 phosphorylation and Golgi accumulation of ASAP1 and Arf1-GTP, resulting in KDEL receptor dispersion from the Golgi and suppression of retrograde transport. At the cell surface, GRP78 binds to and acts in concert with a glycosylphosphatidylinositol-anchored protein, CD109, in blocking TGF-ß signaling by promoting the routing of the TGF-ß receptor to the caveolae, thereby disrupting its binding to and activation of Smad2. Collectively, we uncover a SRC-mediated signaling cascade that leads to the relocalization of ER chaperones to the cell surface and a mechanism whereby GRP78 counteracts the tumor-suppressor effect of TGF-ß.


Assuntos
Antígenos CD/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Quinases da Família src/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD/genética , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática/fisiologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Transporte Proteico/fisiologia , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/genética
8.
Proc Natl Acad Sci U S A ; 114(20): E4020-E4029, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461470

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal disease in critical need of new therapeutic strategies. Here, we report that the stress-inducible 78-kDa glucose-regulated protein (GRP78/HSPA5), a key regulator of endoplasmic reticulum homeostasis and PI3K/AKT signaling, is overexpressed in the acini and PDAC of Pdx1-Cre;KrasG12D/+;p53f/+ (PKC) mice as early as 2 mo, suggesting that GRP78 could exert a protective effect on acinar cells under stress, as during PDAC development. The PKC pancreata bearing wild-type Grp78 showed detectable PDAC by 3 mo and rapid subsequent tumor growth. In contrast, the PKC pancreata bearing a Grp78f/+ allele (PKC78f/+ mice) expressing about 50% of GRP78 maintained normal sizes during the early months, with reduced proliferation and suppression of AKT, S6, ERK, and STAT3 activation. Acinar-to-ductal metaplasia (ADM) has been identified as a key tumor initiation mechanism of PDAC. Compared with PKC, the PKC78f/+ pancreata showed substantial reduction of ADM as well as pancreatic intraepithelial neoplasia-1 (PanIN-1), PanIN-2, and PanIN-3 and delayed onset of PDAC. ADM in response to transforming growth factor α was also suppressed in ex vivo cultures of acinar cell clusters isolated from mouse pancreas bearing targeted heterozygous knockout of Grp78 (c78f/+ ) and subjected to 3D culture in collagen. We further discovered that GRP78 haploinsufficiency in both the PKC78f/+ and c78f/+ pancreata leads to reduction of epidermal growth factor receptor, which is critical for ADM initiation. Collectively, our studies establish a role for GRP78 in ADM and PDAC development.


Assuntos
Carcinoma Ductal Pancreático/genética , Transdiferenciação Celular , Proteínas de Choque Térmico/genética , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Células Acinares/metabolismo , Animais , Carcinogênese , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Chaperona BiP do Retículo Endoplasmático , Feminino , Haploinsuficiência , Proteínas de Choque Térmico/metabolismo , Masculino , Metaplasia , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator de Crescimento Transformador alfa/metabolismo
9.
Anal Chem ; 90(7): 4776-4782, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29553715

RESUMO

Recombinase polymerase amplification (RPA) has been combined with electrochemical detection for simple and rapid point-of-care testing. However, there are two major hindrances to this simple and rapid testing: (i) washing or purification steps are required to remove unbound labeled probes and interfering species in the sample; (ii) it is difficult to quantify double-stranded DNA (dsDNA) electrochemically by using biospecific affinity binding without dsDNA denaturation. In the present study, we describe a wash-free and rapid electrochemical method to detect RPA-amplified dsDNAs using a zinc finger protein, Zif268. Electrochemical detection is achieved using proximity-dependent electron mediation of ferrocenemethanol between a glucose-oxidase (GOx) label and an electrode, which differentiates the specifically electrode-bound and -unbound labels without a washing or purification step. RPA-amplified dsDNA containing a biotin-terminated forward primer is specifically bound to a neutravidin-modified electrode, and GOx-conjugated Zif268 is specifically bound to the dsDNA. The whole detection is performed within 17 min (15 min for the RPA reaction and <2 min for the electrochemical measurement). Electrochemical detection is carried out without an additional incubation period, because the specific binding between Zif268 and the dsDNA occurs during the RPA reaction. The detection method could discriminate between target template DNA of Piscirickettsia salmonis and nontarget DNAs (random sequence and calf thymus DNA). The detection limit for the target DNA is approximately 300 copies in 13.2 µL, indicating that the detection method is ultrasensitive. We believe that the method could offer a promising solution for simple and rapid point-of-care testing.


Assuntos
DNA/análise , Técnicas Eletroquímicas , DNA/genética , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Recombinases/metabolismo
10.
Analyst ; 143(17): 4009-4016, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30043772

RESUMO

A specific double-stranded DNA sensing system is of great interest for diagnostic and other biomedical applications. Zinc finger domains, which recognize double-stranded DNA, can be engineered to form custom DNA-binding proteins for the recognition of specific DNA sequences. As a proof of concept, a sequence-enabled reassembly of a TEM-1 ß-lactamase system (SEER-LAC) was previously demonstrated to develop zinc finger protein (ZFP) arrays for the detection of a double-stranded bacterial DNA sequence. Here, we implemented the SEER-LAC system to demonstrate the direct detection of pathogen-specific DNA sequences present in E. coli O157:H7 on a lab-on-a-chip. ZFPs custom-designed to detect Shiga toxin in E. coli O157:H7 were immobilized on a cyclic olefin copolymer (COC) chip, which can function as a non-PCR based molecular diagnostic device. Pathogen-specific double-stranded DNA was directly detected by using engineered ZFPs immobilized on the COC chip with high specificity, providing a detection limit of 10 fmol of target DNA in a colorimetric assay. Therefore, in this study, we demonstrated the great potential of ZFP arrays on the COC chip for further development of a simple and novel lab-on-a-chip technology for the detection of pathogens.


Assuntos
DNA Bacteriano/isolamento & purificação , Proteínas de Ligação a DNA/química , Escherichia coli O157/isolamento & purificação , Proteínas Imobilizadas/química , Dedos de Zinco , Escherichia coli O157/genética , Dispositivos Lab-On-A-Chip , Polímeros , Engenharia de Proteínas , Sensibilidade e Especificidade
11.
Proc Natl Acad Sci U S A ; 110(22): 9078-83, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671100

RESUMO

Pathogenic retroviruses have evolved multiple means for evading host restriction factors such as apolipoprotein B editing complex (APOBEC3) proteins. Here, we show that murine leukemia virus (MLV) has a unique means of counteracting APOBEC3 and other cytosolic sensors of viral nucleic acid. Using virus isolated from infected WT and APOBEC3 KO mice, we demonstrate that the MLV glycosylated Gag protein (glyco-Gag) enhances viral core stability. Moreover, in vitro endogenous reverse transcription reactions of the glyco-Gag mutant virus were substantially inhibited compared with WT virus, but only in the presence of APOBEC3. Thus, glyco-Gag rendered the reverse transcription complex in the viral core resistant to APOBEC3. Glyco-Gag in the virion also rendered MLV resistant to other cytosolic sensors of viral reverse transcription products in newly infected cells. Strikingly, glyco-Gag mutant virus reverted to glyco-Gag-containing virus only in WT and not APOBEC3 KO mice, indicating that counteracting APOBEC3 is the major function of glyco-Gag. Thus, in contrast to the HIV viral infectivity factor protein, which prevents APOBEC3 packaging in the virion, the MLV glyco-Gag protein uses a unique mechanism to counteract the antiviral action of APOBEC3 in vivo--namely, protecting the reverse transcription complex in viral cores from APOBEC3. These data suggest that capsid integrity may play a critical role in virus resistance to intrinsic cellular antiviral resistance factors that act at the early stages of infection.


Assuntos
Citidina Desaminase/antagonistas & inibidores , Produtos do Gene gag/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Vírus da Leucemia Murina/fisiologia , Transcrição Reversa/fisiologia , Animais , Western Blotting , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Primers do DNA/genética , Produtos do Gene gag/farmacologia , Glicosilação , Vírus da Leucemia Murina/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Retrovirology ; 12: 68, 2015 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-26253512

RESUMO

BACKGROUND: Koala retrovirus (KoRV) is an endogenous and exogenous retrovirus of koalas that may cause lymphoma. As for many other gammaretroviruses, the KoRV genome can potentially encode an alternate form of Gag protein, glyco-gag. RESULTS: In this study, a convenient assay for assessing KoRV infectivity in vitro was employed: the use of DERSE cells (initially developed to search for infectious xenotropic murine leukemia-like viruses). Using infection of DERSE and other human cell lines (HEK293T), no evidence for expression of glyco-gag by KoRV was found, either in expression of glyco-gag protein or changes in infectivity when the putative glyco-gag reading frame was mutated. Since glyco-gag mediates resistance of Moloney murine leukemia virus to the restriction factor APOBEC3, the sensitivity of KoRV (wt or putatively mutant for glyco-gag) to restriction by murine (mA3) or human APOBEC3s was investigated. Both mA3 and hA3G potently inhibited KoRV infectivity. Interestingly, hA3G restriction was accompanied by extensive G → A hypermutation during reverse transcription while mA3 restriction was not. Glyco-gag status did not affect the results. CONCLUSIONS: These results indicate that the mechanisms of APOBEC3 restriction of KoRV by hA3G and mA3 differ (deamination dependent vs. independent) and glyco-gag does not play a role in the restriction.


Assuntos
Citidina Desaminase/metabolismo , Citosina Desaminase/metabolismo , Gammaretrovirus/fisiologia , Produtos do Gene gag/metabolismo , Phascolarctidae/virologia , Replicação Viral , Desaminases APOBEC , Sequência de Aminoácidos , Animais , Gammaretrovirus/genética , Gammaretrovirus/patogenicidade , Produtos do Gene gag/química , Produtos do Gene gag/genética , Células HEK293 , Humanos , Camundongos , Fases de Leitura Aberta , Transcrição Reversa , Alinhamento de Sequência
13.
Analyst ; 140(12): 3947-52, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25969923

RESUMO

Direct detection of double-stranded DNA (dsDNA) using zinc finger proteins (ZFPs) is of great importance in biomedical applications such as identifying pathogens and circulating DNAs. However, its sensitivity is still not sufficiently high because limited signalling labels can be conjugated or fused. Herein, we report sensitive and direct detection of dsDNA using (i) alkaline phosphatase (ALP) as a fast catalytic label conjugated to ZFPs along with (ii) electrochemical measurement of an ALP product (l-ascorbic acid) at the indium-tin oxide electrode with a high signal-to-background ratio. ALP is simply conjugated to a ZFP through lysine residues in a ZFP purification tag, a maltose binding protein (MBP). Sandwich-type electrochemical detection of dsDNA allows a detection limit of ca. 100 fM without using DNA amplification.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Dedos de Zinco , Sequência de Bases , Biotina/metabolismo , DNA/química , DNA/genética , Eletroquímica , Limite de Detecção , Modelos Moleculares , Conformação de Ácido Nucleico , Sondas de Oligonucleotídeos/química
14.
Neoplasia ; 55: 101020, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38991376

RESUMO

The 78-kDa glucose regulated protein (GRP78) commonly upregulated in a wide variety of tumors is an important prognostic marker and a promising target for suppressing tumorigenesis and treatment resistance. While GRP78 is well established as a major endoplasmic reticulum (ER) chaperone with anti-apoptotic properties and a master regulator of the unfolded protein response, its new role as a regulator of oncoprotein expression is just emerging. MYC is dysregulated in about 70 % of human cancers and is the most commonly activated oncoprotein. However, despite recent advances, therapeutic targeting of MYC remains challenging. Here we identify GRP78 as a new target for suppression of MYC expression. Using multiple MYC-dependent cancer models including head and neck squamous cell carcinoma and their cisplatin-resistant clones, breast and pancreatic adenocarcinoma, our studies revealed that GRP78 knockdown by siRNA or inhibition of its activity by small molecule inhibitors (YUM70 or HA15) reduced c-MYC expression, leading to onset of apoptosis and loss of cell viability. This was observed in 2D cell culture, 3D spheroid and in xenograft models. Mechanistically, we determined that the suppression of c-MYC is at the post-transcriptional level and that YUM70 and HA15 treatment potently upregulated the eukaryotic translation inhibitor 4E-BP1, which targets eIF4E critical for c-MYC translation initiation. Furthermore, knock-down of 4E-BP1 via siRNA rescued YUM70-mediated c-MYC suppression. As YUM70 is also capable of suppressing N-MYC expression, this study offers a new approach to suppress MYC protein expression through knockdown or inhibition of GRP78.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico , Proteínas Proto-Oncogênicas c-myc , Humanos , Chaperona BiP do Retículo Endoplasmático/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/antagonistas & inibidores , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Regulação para Cima/efeitos dos fármacos
15.
Cell Biosci ; 14(1): 115, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39238058

RESUMO

BACKGROUND: Despite recent therapeutic advances, combating cancer resistance remains a formidable challenge. The 78-kilodalton glucose-regulated protein (GRP78), a key stress-inducible endoplasmic reticulum (ER) chaperone, plays a crucial role in both cancer cell survival and stress adaptation. GRP78 is also upregulated during SARS-CoV-2 infection and acts as a critical host factor. Recently, we discovered cardiac glycosides (CGs) as novel suppressors of GRP78 stress induction through a high-throughput screen of clinically relevant compound libraries. This study aims to test the possibility that agents capable of blocking stress induction of GRP78 could dually suppress cancer and COVID-19. RESULTS: Here we report that oleandrin (OLN), is the most potent among the CGs in inhibiting acute stress induction of total GRP78, which also results in reduced cell surface and nuclear forms of GRP78 in stressed cells. The inhibition of stress induction of GRP78 is at the post-transcriptional level, independent of protein degradation and autophagy and may involve translational control as OLN blocks stress-induced loading of ribosomes onto GRP78 mRNAs. Moreover, the human Na+/K+-ATPase α3 isoform is critical for OLN suppression of GRP78 stress induction. OLN, in nanomolar range, enhances apoptosis, sensitizes colorectal cancer cells to chemotherapeutic agents, and reduces the viability of patient-derived colon cancer organoids. Likewise, OLN, suppresses GRP78 expression and impedes tumor growth in an orthotopic breast cancer xenograft model. Furthermore, OLN blocks infection by SARS-CoV-2 and its variants and enhances existing anti-viral therapies. Notably, GRP78 overexpression mitigates OLN-mediated cancer cell apoptotic onset and suppression of virus release. CONCLUSION: Our findings validate GRP78 as a target of OLN anti-cancer and anti-viral activities. These proof-of-principle studies support further investigation of OLN as a readily accessible compound to dually combat cancer and COVID-19.

16.
JID Innov ; 3(2): 100163, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36714811

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer, with increased incidence in immunosuppressed patients. ß-Human papillomavirus has been proposed as a contributor to cSCC risk partly on the basis of increased ß-human papillomavirus viral load and seropositivity observed among patients with cSCC. Experimental data in mice colonized with mouse papillomavirus type 1 suggest that T cell immunity against ß-human papillomavirus suppresses skin cancer in immunocompetent hosts, and the loss of this immunity leads to the increased risk of cSCC. In this study, we show that CD8+ T cell depletion in mouse papillomavirus type 1‒colonized mice that underwent skin carcinogenesis protocol led to increased viral load in the skin and seropositivity for anti‒mouse papillomavirus type 1 antibodies. These findings provide evidence that compromised T cell immunity can be the link that connects increased ß-human papillomavirus detection to cSCC risk.

17.
Viruses ; 15(5)2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37243204

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, has given rise to many new variants with increased transmissibility and the ability to evade vaccine protection. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum (ER) chaperone that has been recently implicated as an essential host factor for SARS-CoV-2 entry and infection. In this study, we investigated the efficacy of YUM70, a small molecule inhibitor of GRP78, to block SARS-CoV-2 viral entry and infection in vitro and in vivo. Using human lung epithelial cells and pseudoviral particles carrying spike proteins from different SARS-CoV-2 variants, we found that YUM70 was equally effective at blocking viral entry mediated by original and variant spike proteins. Furthermore, YUM70 reduced SARS-CoV-2 infection without impacting cell viability in vitro and suppressed viral protein production following SARS-CoV-2 infection. Additionally, YUM70 rescued the cell viability of multi-cellular human lung and liver 3D organoids transfected with a SARS-CoV-2 replicon. Importantly, YUM70 treatment ameliorated lung damage in transgenic mice infected with SARS-CoV-2, which correlated with reduced weight loss and longer survival. Thus, GRP78 inhibition may be a promising approach to augment existing therapies to block SARS-CoV-2, its variants, and other viruses that utilize GRP78 for entry and infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/fisiologia , Chaperona BiP do Retículo Endoplasmático , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus , Pandemias , Pulmão
18.
Int J Biol Macromol ; 230: 123124, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599386

RESUMO

Antibacterial materials have been developed for a long time but bacteria adapt very quickly and become resistant to these materials. This study focuses on the synthesis of a hybrid material system from lignin and silver/silica nanoparticles (Lig@Ag/SiO2 NPs) which were used against bacteria including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and inhibited the growth of the fungal Aspergillus flavus (A. flavus). The results showed that the spherical diameter of Lig@Ag/SiO2 NPs has narrow Gaussian distribution with a range from 15 nm to 40 nm in diameter. Moreover, there was no growth of E. coli in samples containing Lig@Ag/SiO2 NPs during 72-h incubation while colonies of S. aureus were only observed at high concentrations (106 CFU/mL) although both species of bacteria were able to thrive even at low bacterial concentration when they were exposed to Ag/SiO2 or lignin. For fungal resistance results, Lig@Ag/SiO2 NPs not only reduced mycelial growth but also inhibited sporulation in A. flavus, leading to decreasing the spreading of spores into the environment. This result represents a highly effective fungal growth inhibition of Lig@Ag/SiO2 NPs compared to lignin or Ag/SiO2, which could not inhibit the growth of sporulation.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Oryza , Antifúngicos/farmacologia , Staphylococcus aureus , Dióxido de Silício/farmacologia , Lignina/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Bactérias
19.
Retrovirology ; 9: 58, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22828015

RESUMO

BACKGROUND: One of the unique features of gammaretroviruses is that they contain an additional extended form of Gag, glyco-gag, which initiates in the leader sequence. MuLV glyco-gag, gPr80Gag, promotes retrovirus replication and disease progression. Although virtually all infectious MuLVs encode glyco-gag, XMRV (xenotropic murine leukemia virus-related virus) lacks the classical gPr80Gag sequence. We examined XMRV to determine if its leader sequence contains glyco-gag activity, whether the presence of conventional gPr80Gag affects replication of XMRV, and we describe the evolution of glyco-gag-deficient MuLVs in Mus. RESULTS: We introduced several mutations disrupting two putative but noncanonical glyco-gag proteins in the leader sequence region in XMRV and found that those mutations did not affect virus release nor susceptibility to the antiviral activity of hA3G (human APOBEC3G). A chimeric XMRV encoding the Moloney MuLV (M-MuLV) leader sequence (MXMRV) demonstrated that M-MuLV glyco-gag facilitated MXMRV release and increased infectivity. Infectivity assays with several cell lines showed that glyco-gag increases XMRV infectivity in all cell lines tested, but the level of this increase varies in different cell lines. Because MuLV glyco-gag counteracts mouse APOBEC3, we investigated whether M-MuLV glyco-gag enhances XMRV infection by counteracting human APOBEC3. Comparison of hAPOBEC3 isoforms expressed in different cell lines indicated that hA3B was the most likely candidate for a restrictive hA3. However over-expression of hA3B showed no enhanced restriction of infection by XMRV compared to MXMRV. Endogenous MuLVs in the sequenced mouse genome were screened for canonical glyco-gag, which was identified in two clades of xenotropic MuLVs (X-MuLVs) and ecotropic MuLVs, but not in other X-MuLVs or in any polytropic MuLVs. CONCLUSIONS: M-MuLV glyco-gag facilitates XMRV replication, and the leader sequence region in XMRV does not encode proteins equivalent to M-MuLV glyco-gag. The fact that the ability of glyco-gag to enhance XMRV infection varies in different cell lines suggests a glyco-gag sensitive restrictive factor that further reduces XMRV infectivity. The M-MuLV glyco-gag enhancement for XMRV replication is through a hAPOBEC3 independent mechanism. The absence of glyco-gag in MuLVs carried by western European mice suggests that loss of this sequence is a relatively recent event with limited subspecies distribution.


Assuntos
Citosina Desaminase/metabolismo , Produtos do Gene gag/metabolismo , Glicoproteínas/metabolismo , Vírus da Leucemia Murina de Moloney/metabolismo , Replicação Viral , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/fisiologia , Desaminases APOBEC , Sequência de Aminoácidos , Animais , Sequência de Bases , Citidina Desaminase , Citosina Desaminase/antagonistas & inibidores , Citosina Desaminase/genética , Evolução Molecular , Produtos do Gene gag/classificação , Produtos do Gene gag/genética , Genoma Viral , Glicoproteínas/genética , Glicosilação , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Dados de Sequência Molecular , Vírus da Leucemia Murina de Moloney/genética , Mutagênese Sítio-Dirigida , Mutação , Filogenia , Ratos , Liberação de Vírus , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/metabolismo
20.
Neoplasia ; 33: 100837, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162331

RESUMO

KRAS is the most commonly mutated oncogene in human cancers with limited therapeutic options, thus there is a critical need to identify novel targets and inhibiting agents. The 78-kDa glucose-regulated protein GRP78, which is upregulated in KRAS cancers, is an essential chaperone and the master regulator of the unfolded protein response (UPR). Following up on our recent discoveries that GRP78 haploinsufficiency suppresses both KRASG12D-driven pancreatic and lung tumorigenesis, we seek to determine the underlying mechanisms. Here, we report that knockdown of GRP78 via siRNA reduced oncogenic KRAS protein level in human lung, colon, and pancreatic cancer cells bearing various KRAS mutations. This effect was at the post-transcriptional level and is independent of proteasomal degradation or autophagy. Moreover, targeting GRP78 via small molecule inhibitors such as HA15 and YUM70 with anti-cancer activities while sparing normal cells significantly suppressed oncogenic KRAS expression in vitro and in vivo, associating with onset of apoptosis and loss of viability in cancer cells bearing various KRAS mutations. Collectively, our studies reveal that GRP78 is a previously unidentified regulator of oncogenic KRAS expression, and, as such, augments the other anti-cancer activities of GRP78 small molecule inhibitors to potentially achieve general, long-term suppression of mutant KRAS-driven tumorigenesis.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas Proto-Oncogênicas p21(ras) , Carcinogênese , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Glucose , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA