Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Stem Cells ; 33(11): 3291-303, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26235673

RESUMO

Previous studies have shown that mesenchymal stem cell (MSC)-based therapies have varying efficacies for the treatment of various diseases, including cartilage defects. In this study, we demonstrated that the chondrogenic differentiation potential of human umbilical cord blood-derived MSCs (hUCB-MSCs) obtained from different individual donors varies, and we investigated the molecular basis for this variation. Microarray gene expression analysis identified thrombospondin-2 (TSP2) as a candidate gene underlying the interindividual variation in the chondrogenic differentiation potential of hUCB-MSCs. To assess the association between TSP-2 and the differentiation potential, we evaluated chondrogenic differentiation of hUCB-MSCs treated with TSP2 siRNA. In addition, we studied the effect of supplementing exogenous recombinant TSP-2 on TSP2 siRNA-treated hUCB-MSCs. We found that TSP-2 autocrinally promoted chondrogenic differentiation of hUCB-MSCs via the Notch signaling pathway, which was confirmed in MSCs from other sources such as bone marrow and adipose tissue. Interestingly, we observed that TSP-2 attenuated hypertrophy, which inevitably occurs during chondrogenic differentiation of hUCB-MSCs. Our findings indicated that the variable chondrogenic differentiation potential of MSCs obtained from different donors is influenced by the TSP-2 level in the differentiating cells. Thus, the TSP-2 level can be used as a marker to select MSCs with superior chondrogenic differentiation potential for use in cartilage regeneration therapy.


Assuntos
Comunicação Autócrina/fisiologia , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Sangue Fetal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Trombospondinas/metabolismo , Células Cultivadas , Humanos , Hipertrofia , Recém-Nascido
2.
Biochem Biophys Res Commun ; 446(4): 983-9, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24657442

RESUMO

Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore "immunologically safe" for use in allogeneic clinical applications.


Assuntos
Sangue Fetal/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Animais , Antígenos CD34/análise , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunoglobulina G/imunologia , Interferon gama/imunologia , Ativação Linfocitária , Camundongos , Camundongos SCID , Fator de Necrose Tumoral alfa/imunologia
3.
Stem Cells ; 31(10): 2136-48, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23843355

RESUMO

Increasing evidence indicates that the secretome of mesenchymal stem cells (MSCs) has therapeutic potential for the treatment of various diseases, including cartilage disorders. However, the paracrine mechanisms underlying cartilage repair by MSCs are poorly understood. Here, we show that human umbilical cord blood-derived MSCs (hUCB-MSCs) promoted differentiation of chondroprogenitor cells by paracrine action. This paracrine effect of hUCB-MSCs on chondroprogenitor cells was increased by treatment with synovial fluid (SF) obtained from osteoarthritis (OA) patients but was decreased by SF of fracture patients, compared to that of an untreated group. To identify paracrine factors underlying the chondrogenic effect of hUCB-MSCs, the secretomes of hUCB-MSCs stimulated by OA SF or fracture SF were analyzed using a biotin label-based antibody array. Among the proteins increased in response to these two kinds of SF, thrombospondin-2 (TSP-2) was specifically increased in only OA SF-treated hUCB-MSCs. In order to determine the role of TSP-2, exogenous TSP-2 was added to a micromass culture of chondroprogenitor cells. We found that TSP-2 had chondrogenic effects on chondroprogenitor cells via PKCα, ERK, p38/MAPK, and Notch signaling pathways. Knockdown of TSP-2 expression on hUCB-MSCs using small interfering RNA abolished the chondrogenic effects of hUCB-MSCs on chondroprogenitor cells. In parallel with in vitro analysis, the cartilage regenerating effect of hUCB-MSCs and TSP-2 was also demonstrated using a rabbit full-thickness osteochondral-defect model. Our findings suggested that hUCB-MSCs can stimulate the differentiation of locally presented endogenous chondroprogenitor cells by TSP-2, which finally leads to cartilage regeneration.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Trombospondinas/metabolismo , Adulto , Idoso , Animais , Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Pessoa de Meia-Idade , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/patologia , Coelhos , Regeneração , Medicina Regenerativa , Líquido Sinovial/fisiologia , Trombospondinas/fisiologia , Trombospondinas/uso terapêutico
4.
World J Stem Cells ; 12(12): 1511-1528, 2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33505598

RESUMO

Umbilical cord blood (UCB) is a primitive and abundant source of mesenchymal stem cells (MSCs). UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders. Despite the high latent self-renewal and differentiation capacity of these cells, the safety, efficacy, and yield of MSCs expanded for ex vivo clinical applications remains a concern. However, immunomodulatory effects have emerged in various disease models, exhibiting specific mechanisms of action, such as cell migration and homing, angiogenesis, anti-apoptosis, proliferation, anti-cancer, anti-fibrosis, anti-inflammation and tissue regeneration. Herein, we review the current literature pertaining to the UCB-derived MSC application as potential treatment strategies, and discuss the concerns regarding the safety and mass production issues in future applications.

5.
Stem Cells Int ; 2020: 1802976, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399038

RESUMO

Therapeutic treatment of various inflammation-related diseases using mesenchymal stem cells (MSCs) has increased in recent years because of the paracrine action of these cells but shows several limitations. First, MSC-based therapies exhibit varying efficacies; thus, biomarkers should be determined to identify who may benefit from these candidate therapeutic agents. Second, the mechanism underlying the therapeutic effects is poorly understood. To evaluate the effects of human umbilical cord blood-derived MSCs (UCB-MSCs) on macrophages, the macrophage cell line NR8383 stimulated with lipopolysaccharide (LPS) was cocultured by UCB-MSCs. We found that UCB-MSCs mediated changes in macrophage polarization towards M2 from M1 macrophages. To identify the paracrine action underlying the anti-inflammation effect of UCB-MSCs, the secretion of UCB-MSCs exposed to LPS-stimulated NR8383 cells was tested using a biotin label-based 507 antibody array. Among the secreted proteins, we selected pentraxin-related protein PTX3/tumor necrosis factor-inducible gene 14 protein (PTX3) to investigate its association with UCB-MSCs in macrophage polarization. We found that human PTX3 was secreted from UCB-MSCs under inflammation condition and reinforced the M2 macrophage marker via the Dectin-1 receptor by activating MSK1/2 phosphorylation signaling in NR8383 cells. Accordingly, knockdown of PTX3 in UCB-MSCs significantly attenuated their therapeutic effects in a neonatal hyperoxic lung injury resulting in reduced survival, lung alveolarization, M2 marker expression, Dectin-1 levels, anti-inflammatory cytokines, and improved M1 marker expression and inflammatory cytokines compared to control MSC-injected rats. UCB-MSCs show therapeutic potential by controlling macrophage polarization. Interestingly, higher PTX3 levels in UCB-MSCs induced greater improvement in the therapeutic effects than lower PTX3 levels. Collectively, PTX3 is a potential marker with critical paracrine effects for predicting the therapeutic potential of MSC therapy in inflammatory diseases; quality control assessments using PTX3 may be useful for improving the therapeutic effects of UCB-MSCs.

6.
Antioxidants (Basel) ; 9(1)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940867

RESUMO

Umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are accessible, available in abundance, and have been shown to be a promising source that can regenerate cartilage in patients with osteoarthritis or other orthopedic diseases. Recently, a three-dimensional (3D) cell culture system was developed to mimic the naive tissue microenvironment. However, the efficacy of cells generated from the 3D spheroid culture system has not yet been elucidated. In the present study, we demonstrate the changes in superoxide dismutase 2 (SOD2) gene expression, an indicator of oxidative stress, on 3D spheroid MSCs. Moreover, siRNA transfection and neutralizing antibody investigations were performed to confirm the function of SOD2 and E-cadherin. Overall, we found that SOD2 siRNA transfection in the spheroid form of MSCs increases the expression of apoptotic genes and decreases the clearance of mitochondrial reactive oxygen species (ROS). As a result, we confirm that 3D spheroid formation increases E-cadherin and SOD2 expression, ultimately regulating the phosphoinositide 3-kinase (PI3K/pAkt/pNrf2 and pERK/pNrf2 signaling pathway. Additionally, we show that SOD2 expression on 3D spheroid MSCs affects the regeneration rates of destructive cartilage in an osteoarthritic model. We postulate that the impact of SOD2 expression on 3D spheroid MSCs reduces oxidative stress and apoptosis, and also promotes cartilage regeneration.

7.
FEBS J ; 275(14): 3546-55, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18513326

RESUMO

One of the characteristic features of the pathogenesis of rheumatoid arthritis is synovial hyperplasia. We have reported previously that metastatic lymph node 51 (MLN51) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are involved in the proliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis. In this study, we have found that: (1) GM-CSF-mediated MLN51 upregulation is attributable to both transcriptional and post-translational control in rheumatoid arthritis fibroblast-like synoviocytes; (2) p38 mitogen-activated protein kinase plays a key role in the upregulation of MLN51; and (3) FLICE-inhibitory protein is upregulated downstream of MLN51 in response to GM-CSF, resulting in the proliferation of fibroblast-like synoviocytes. These results imply that GM-CSF signaling activates mitogen-activated protein kinase, followed by the upregulation of MLN51 and FLICE-inhibitory protein, resulting in fibroblast-like synoviocyte hyperplasia in rheumatoid arthritis.


Assuntos
Artrite Reumatoide/etiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/fisiologia , Membrana Sinovial/citologia , Apoptose , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/biossíntese , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Proteínas de Ligação a RNA , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA