Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 20(1): 194, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641064

RESUMO

BACKGROUND: Although three years after the outbreak of SARS-CoV-2, the virus is still having a significant impact on human health and the global economy. Infection through respiratory droplets is the main transmission route, but the transmission of the virus by surface contact cannot be ignored. Hand sanitizers and antiviral films can be applied to control SARS-CoV-2, but sanitizers and films show drawbacks such as resistance of the virus against ethanol and environmental problems including the overuse of plastics. Therefore, this study suggested applying natural substrates to hand sanitizers and antiviral films made of biodegradable plastic (PLA). This approach is expected to provide advantages for the easy control of SARS-CoV-2 through the application of natural substances. METHODS: Antiviral disinfectants and films were manufactured by adding caffeic acid and vanillin to ethanol, isopropyl alcohol, benzalkonium chloride, and PLA. Antiviral efficacies were evaluated with slightly modified international standard testing methods EN 14,476 and ISO 21,702. RESULTS: In suspension, all the hand sanitizers evaluated in this study showed a reduction of more than 4 log within 2 min against HCoV-229E. After natural substances were added to the hand sanitizers, the time needed to reach the detection limit of the viral titer was shortened both in suspension and porcine skin. However, no difference in the time needed to reach the detection limit of the viral titer was observed in benzalkonium chloride. In the case of antiviral films, those made using both PLA and natural substances showed a 1 log reduction of HCoV-229E compared to the neat PLA film for all treatment groups. Furthermore, the influence of the organic load was evaluated according to the number of contacts of the antiviral products with porcine skin. Ten rubs on the skin resulted in slightly higher antiviral activity than 50 rubs. CONCLUSION: This study revealed that caffeic acid and vanillin can be effectively used to control HCoV-229E for hand sanitizers and antiviral films. In addition, it is recommended to remove organic matter from the skin for maintaining the antiviral activity of hand sanitizer and antiviral film as the antiviral activity decreased as the organic load increased in this study.


Assuntos
COVID-19 , Coronavirus Humano 229E , Higienizadores de Mão , Humanos , Suínos , Animais , Antivirais/farmacologia , Compostos de Benzalcônio , SARS-CoV-2 , Poliésteres , Etanol
2.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599629

RESUMO

Aquaculture is one of the most significant food sources from the prehistoric period. As aquaculture intensifies globally, the prevalence and outbreaks of various pathogenic microorganisms cause fish disease and heavy mortality, leading to a drastic reduction in yield and substantial economic loss. With the modernization of the aquaculture system, a new challenge regarding biofilms or bacterial microenvironments arises worldwide, which facilitates pathogenic microorganisms to survive under unfavorable environmental conditions and withstand various treatments, especially antibiotics and other chemical disinfectants. However, we focus on the mechanistic association between those microbes which mainly form biofilm and probiotics in one of the major food production systems, aquaculture. In recent years, probiotics and their derivatives have attracted much attention in the fisheries sector to combat the survival strategy of pathogenic bacteria. Apart from this, Bibliometric analysis provides a comprehensive overview of the published literature, highlighting key research themes, emerging topics, and areas that require further investigation. This information is valuable for researchers, policymakers, and stakeholders in determining research priorities and allocating resources effectively.

3.
Biofouling ; 39(6): 617-628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37580896

RESUMO

Salmonella is a food-borne microorganism that is also a zoonotic bacterial hazard in the food sector. This study determined how well a mixed culture of Salmonella Kentucky formed biofilms on plastic (PLA), silicon rubber (SR), rubber gloves (RG), chicken skin and eggshell surfaces. In vitro interactions between the histone deacetylase inhibitor-vorinostat (SAHA)-and S. enterica serotype Kentucky were examined utilizing biofilms. The minimum inhibitory concentration (MIC) of SAHA was 120 µg mL-1. The addition of sub-MIC (60 µg mL-1) of SAHA decreased biofilm formation for 24 h on PLA, SR, RG, Chicken skin, and eggshell by 3.98, 3.84, 4.11, 2.86 and 3.01 log (p < 0.05), respectively. In addition, the initial rate of bacterial biofilm formation was higher on chicken skin than on other surfaces, but the inhibitory effect was reduced. Consistent with this conclusion, virulence genes expression (avrA, rpoS and hilA) and quorum-sensing (QS) gene (luxS) was considerably downregulated at sub-MIC of SAHA. SAHA has potential as an anti-biofilm agent against S. enterica serotype Kentucky biofilm, mostly by inhibiting virulence and quorum-sensing gene expression, proving the histone deacetylase inhibitor could be used to control food-borne biofilms in the food industry.


Assuntos
Biofilmes , Salmonella enterica , Salmonella enterica/genética , Vorinostat/farmacologia , Virulência , Sorogrupo , Inibidores de Histona Desacetilases/farmacologia , Kentucky , Borracha , Percepção de Quorum , Poliésteres/farmacologia
4.
Food Control ; 143: 109306, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35975280

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 269 million people and killed more than 5.3 million people worldwide. Although fomite transmission of SARS-CoV-2 has been continuously reported, few studies have been conducted on food contact surfaces. Therefore, this study aimed to investigate the viability of coronaviruses on food contact surfaces and to remove SARS-CoV-2 contaminated on food contact surfaces with disinfectants. At 20 °C, SARS-CoV-2 was inactivated within 48 h on all food contact surfaces. At 4 °C, it was inactivated at 48 h on kraft paper and 96 h on parchment paper, but it was viable up to 5 days in low-density polyethylene (LDPE). At -20 °C, SARS-CoV-2 did not decrease by even 1 log on all food contact surfaces until 5 days. Treatment with 70% ethanol or 1000 ppm sodium hypochlorite for 5 min was sufficient to completely remove SARS-CoV-2 from 6 food contact surfaces. Similarly, UV-C irradiation at 60 mJ/cm2 eliminated SARS-CoV-2 contaminated on food contact surfaces. Also, the wiping test showed that even wiping an area contaminated with SARS-CoV-2 with a cloth moistened with 70% ethanol or 1000 ppm sodium hypochlorite, it took 5 min to inactivate the virus. Our findings suggested that SARS-CoV-2 contaminated on food contact surfaces in local retail may be viable enough to be transported home. However, if the type and method of use of the disinfectant suggested in this study are followed, it is possible to sufficiently control the fomite transmission of SARS-CoV-2 through food contact surfaces at home.

5.
Compr Rev Food Sci Food Saf ; 22(4): 3395-3421, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37288815

RESUMO

Various foodborne viruses have been associated with human health during the last decade, causing gastroenteritis and a huge economic burden worldwide. Furthermore, the emergence of new variants of infectious viruses is growing continuously. Inactivation of foodborne viruses in the food industry is a formidable task because although viruses cannot grow in foods, they can survive in the food matrix during food processing and storage environments. Conventional inactivation methods pose various drawbacks, necessitating more effective and environmentally friendly techniques for controlling foodborne viruses during food production and processing. Various inactivation approaches for controlling foodborne viruses have been attempted in the food industry. However, some traditionally used techniques, such as disinfectant-based or heat treatment, are not always efficient. Nonthermal techniques are considered a new platform for effective and safe treatment to inactivate foodborne viruses. This review focuses on foodborne viruses commonly associated with human gastroenteritis, including newly emerged viruses, such as sapovirus and Aichi virus. It also investigates the use of chemical and nonthermal physical treatments as effective technologies to inactivate foodborne viruses.


Assuntos
Gastroenterite , Vírus , Humanos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Alimentos
6.
Compr Rev Food Sci Food Saf ; 22(3): 1555-1596, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36815737

RESUMO

Poultry is thriving across the globe. Chicken meat is the most preferred poultry worldwide, and its popularity is increasing. However, poultry also threatens human hygiene, especially as a fomite of infectious diseases caused by the major foodborne pathogens (Campylobacter, Salmonella, and Listeria). Preventing pathogenic bacterial biofilm is crucial in the chicken industry due to increasing food safety hazards caused by recurring contamination and the rapid degradation of meat, as well as the increased resistance of bacteria to cleaning and disinfection procedures commonly used in chicken processing plants. To address this, various innovative and promising strategies to combat bacterial resistance and biofilm are emerging to improve food safety and quality and extend shelf-life. In particular, natural compounds are attractive because of their potential antimicrobial activities. Natural compounds can also boost the immune system and improve poultry health and performance. In addition to phytochemicals, bacteriophages, nanoparticles, coatings, enzymes, and probiotics represent unique and environmentally friendly strategies in the poultry processing industry to prevent foodborne pathogens from reaching the consumer. Lactoferrin, bacteriocin, antimicrobial peptides, cell-free supernatants, and biosurfactants are also of considerable interest for their prospective application as natural antimicrobials for improving the safety of raw poultry meat. This review aims to describe the feasibility of these proposed strategies and provide an overview of recent published evidences to control microorganisms in the poultry industry, considering the human health, food safety, and economic aspects of poultry production.


Assuntos
Campylobacter , Aves Domésticas , Animais , Humanos , Microbiologia de Alimentos , Inocuidade dos Alimentos , Carne/microbiologia , Bactérias
7.
Crit Rev Food Sci Nutr ; : 1-28, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066482

RESUMO

The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.

8.
Food Microbiol ; 104: 103997, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287816

RESUMO

Salmonella is the leading cause of zoonotic foodborne illnesses worldwide and a prevalent threat to the poultry industry. For controlling contamination, the use of chemical sanitizers in combination with biological compounds (e.g., enzymes) offers a solution to reduce the chemical residues. The current study investigated the biofilm reduction effects of a food-grade enzyme-ficin-and a common sanitizer-peroxyacetic acid (PAA)-against an emerging pathogen, Salmonella enterica ser. Thompson, on plastic, eggshell, and chicken skin surfaces. Results showed that PAA could kill S. Thompson, but ficin cannot. Maximum biofilm reduction was 3.7 log CFU/cm2 from plastic after individual treatment with PAA. However, sequential treatment of ficin and PAA led to biofilm reductions of 3.2, 5.0, and 6.5 log CFU/cm2 from chicken skin, eggshell, and plastic, respectively. Fourier-transform infrared spectroscopy and microscopic analysis confirmed that ficin increased PAA action, causing biofilm matrix destruction. Moreover, the quality of the food surfaces was only altered by 12.5 U/mL ficin and was not altered by PAA. This combined use of enzyme and sanitizer solved major safety issues and proved promising against S. Thompson-associated contaminations in poultry and poultry processing lines.


Assuntos
Ácido Peracético , Salmonella enterica , Animais , Biofilmes , Galinhas , Casca de Ovo , Ficina/farmacologia , Ácido Peracético/farmacologia , Plásticos/farmacologia , Salmonella , Sorogrupo
9.
Food Microbiol ; 102: 103906, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809938

RESUMO

The risk of salmonellosis is expected to increase with the rise in the consumption of poultry meat. The aim of this study was to investigate the combination treatment of peroxyacetic acid (PAA) or lactic acid (LA) with UV-C against Salmonella Enteritidis biofilms formed on food contact surface (stainless steel [SS], silicone rubber [SR], and ultra-high molecular weight polyethylene [UHMWPE]) and chicken skin. The biofilm on food contact surface and chicken skin was significantly decreased (P < 0.05) by combination treatment of PAA or LA with UV-C. Combination treatment of PAA (50-500 µg/mL) with UV-C (5 and 10 min) reduced 3.10-6.41 log CFU/cm2 and LA (0.5-2.0%) with UV-C (5 and 10 min) reduced 3.35-6.41 log CFU/cm2 of S. Enteritidis biofilms on food contact surface. Salmonella Enteritidis biofilms on chicken skin was reduced around 2 log CFU/g with minor quality changes in color and texture by combination treatment of PAA (500 µg/mL) or LA (2.0%) with UV-C (10 min). Additional reduction occurred on SS and UHMWPE by PAA or LA with UV-C, while only LA with UV-C caused additional reduction on chicken skin. Also, it was visualized that the biofilm on food contact surface and chicken skin was removed through field emission scanning electron microscopy (FESEM) and death of cells constituting the biofilm was confirmed through confocal laser scanning microscopy (CLSM). These results indicating that the combination treatment of PAA or LA with UV-C could be used for S. Enteritidis biofilm control strategy in poultry industry.


Assuntos
Manipulação de Alimentos , Ácido Láctico , Ácido Peracético , Aves Domésticas/microbiologia , Salmonella enteritidis , Animais , Biofilmes , Galinhas/microbiologia , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Ácido Láctico/farmacologia , Ácido Peracético/farmacologia , Aço Inoxidável
10.
Food Control ; 142: 109271, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35875338

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of the COVID-19 outbreaks, is transmitted by respiratory droplets and has become a life-threatening viral pandemic worldwide. The aim of this study was to evaluate the effects of different chemical (chlorine dioxide [ClO2] and peroxyacetic acid [PAA]) and physical (ultraviolet [UV]-C irradiation) inactivation methods on various food-contact surfaces (stainless steel [SS] and polypropylene [PP]) and foods (lettuce, chicken breast, and salmon) contaminated with human coronavirus 229E (HCoV-229E). Treatments with the maximum concentration of ClO2 (500 ppm) and PAA (200 ppm) for 5 min achieved >99.9% inactivation on SS and PP. At 200 ppm ClO2 for 1 min on lettuce, chicken breast, and salmon, the HCoV-229E titers were 1.19, 3.54, and 3.97 log10 TCID50/mL, respectively. Exposure (5 min) to 80 ppm PAA achieved 1.68 log10 reduction on lettuce, and 2.03 and 1.43 log10 reductions on chicken breast and salmon, respectively, treated with 1500 ppm PAA. In the carrier tests, HCoV-229E titers on food-contact surfaces were significantly decreased (p < 0.05) with increased doses of UV-C (0-60 mJ/cm2) and not detected at the maximum UV-C dose (Detection limit: 1.0 log10 TCID50/coupon). The UV-C dose of 900 mJ/cm2 proved more effective on chicken breast (>2 log10 reduction) than on lettuce and salmon (>1 log10 reduction). However, there were no quality changes (p > 0.05) in food samples after inactivation treatments except the maximum PAA concentration (5 min) and the UV-C dose (1800 mJ/cm2).

11.
Crit Rev Food Sci Nutr ; 61(11): 1827-1851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32436440

RESUMO

The contamination of seafood with Vibrio species can have severe repercussions in the seafood industry. Vibrio species can form mature biofilms and persist on the surface of several seafoods such as crabs, oysters, mussels, and shrimp, for extended duration. Several conventional approaches have been employed to inhibit the growth of planktonic cells and prevent the formation of Vibrio biofilms. Since Vibrio biofilms are mostly resistant to these control measures, novel alternative methods need to be urgently developed. In this review, we propose environmentally friendly approaches to suppress Vibrio biofilm formation using a hypothesized mechanism of action.


Assuntos
Biofilmes , Vibrio , Animais , Crustáceos , Alimentos Marinhos
12.
Biofouling ; 37(6): 606-614, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34190008

RESUMO

The goal was to identify the biofilm-forming ability of Cronobacter sakazakii on surfaces of stainless steel (SS) and silicone rubber (SR) in contact with infant formula milk. Two representative bacteriophages (PBES04 and PBES19) were used to control the growth of C. sakazakii as well as its biofilm forming ability on either SS or SR surfaces. Bacterial growth was confirmed at 20 °C when PBES04 and PBES19 were used, whereas C. sakazakii was not normally detected in infant formula milk treated with both bacteriophages for 6 h. In an additional biofilm reduction experiment, the biofilm on SS or SR surfaces were reduced by 3.07 and 1.92 log CFU cm-2, respectively after PBES04 treatment, and 3.06 and 2.14 log CFU cm-2, respectively, after PBES19 treatment. These results demonstrate that bacteriophages can be effective in inactivating C. sakazakii in biofilms which could potentially increase food safety in commercial facilities.


Assuntos
Bacteriófagos , Cronobacter sakazakii , Animais , Biofilmes , Microbiologia de Alimentos , Humanos , Lactente , Fórmulas Infantis , Leite , Plâncton
13.
Trends Food Sci Technol ; 109: 25-36, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33456205

RESUMO

BACKGROUND: The COVID-19 pandemic that emerged in 2019 has imposed huge consequences, including economic losses and threats to human health, which are still affecting many aspects throughout the world. SCOPE AND APPROACH: This review provides an overview of SARS-CoV-2 infection, the cause of COVID-19, and explores its impact on the food supply system and food safety. This review examines the potential risk of transmission through food and environmental surfaces before discussing an effective inactivation strategy to control the COVID-19 pandemic in the aspect of food safety. This article also suggests effective food safety management post-COVID-19. KEY FINDINGS AND CONCLUSIONS: Respiratory viruses including SARS-CoV-2 are responsible for huge impacts on the global economy and human health. Although food and water are not currently considered priority transmission routes of SARS-CoV-2, infection through contaminated food and environmental surfaces where the virus can persist for several days cannot be ignored, particularly when the surrounding environment is unhygienic. This approach could help determine the exact transmission route of SARS-CoV-2 and prepare for the post-COVID-19 era in the food safety sector.

14.
J Dairy Sci ; 104(6): 6516-6534, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33741164

RESUMO

Listeria monocytogenes is a major foodborne pathogen that adversely affects the food industry. In this study, 6 anti-listerial lactic acid bacteria (LAB) isolates were screened. These anti-listerial LAB isolates were identified via 16S rRNA gene sequencing and analyzed via repetitive extragenic palindromic-PCR. Probiotic assessment of these isolates, comprising an evaluation of the antibiotic susceptibility, tolerance to lysozyme, simulated gastric and intestinal juices, and gut conditions (low pH, bile salts, and 0.4% phenol), was carried out. Most of the isolates were resistant to streptomycin, vancomycin, gentamycin, kanamycin, and ciprofloxacin. All of the isolates were negative for virulence genes, including agg, ccf, cylA, cylB, cylLL, cylLS, cylM, esp, and gelE, and hemolytic activity. Furthermore, autoinducer-2 (a quorum-sensing molecule) was detected and quantified via HPLC with fluorescence detection after derivatization with 2,3-diaminonaphthalene. Metabolites profiles of the Lactobacillus sakei D.7 and Lactobacillus plantarum I.60 were observed and presented various organic acids linked with antibacterial activity. Moreover, freeze-dried cell-free supernatants from Lb. sakei (55 mg/mL) and Lb. plantarum (40 mg/mL) showed different minimum effective concentration (MEC) against L. monocytogenes in the food model (whole milk). In summary, these anti-listerial LAB isolates do not pose a risk to consumer health, are eco-friendly, and may be promising candidates for future use as bioprotective cultures and new probiotics to control contamination by L. monocytogenes in the food and dairy industries.


Assuntos
Lactobacillales , Listeria , Probióticos , Animais , Lactobacillales/genética , Leite , RNA Ribossômico 16S
15.
Compr Rev Food Sci Food Saf ; 20(6): 5938-5964, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626152

RESUMO

Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.


Assuntos
Biofilmes , Microbiologia de Alimentos , Manipulação de Alimentos , Indústria Alimentícia , Indústria de Processamento de Alimentos
16.
Appl Microbiol Biotechnol ; 104(14): 6249-6260, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32451588

RESUMO

Cheese is a fermented dairy product that is made from animal milk and is considered to be a healthy food due to its available nutrients and potential probiotic characteristics. Since the microbes in the cheese matrix directly contribute to the quality and physicochemical properties of cheese, it is important to understand the microbial properties of cheese. In this study, Cheddar cheeses produced on three different dates at the Arbuthnot Dairy Center at Oregon State University were collected to determine the microbial community structure. A total of 773,821 sequencing reads and 271 amplicon sequence variants (ASVs) were acquired from 108 samples. Streptococcus and Lactococcus were observed as the most abundant ASVs in the cheese, which were used as the starter lactic acid bacteria (SLAB). Escherichia coli was detected in the raw milk; however, it was not detected after inoculating with SLAB. According to an alpha diversity analysis, SLAB inoculation decreased the microbial richness by inhibiting the growth of other bacteria present in the milk. A beta diversity analysis showed that microbial communities before the addition of SLAB clustered together, as did the samples from cheese making and aging. Non-starter lactic acid bacteria (NSLAB) were detected 15 weeks into aging for the June 6th and June 26th produced cheeses, and 17 weeks into aging for the cheese produced on April 26th. These NSLAB were identified as an unidentified group of Lactobacillaceae. This study characterizes the changes in the Cheddar cheese microbiome over the course of production from raw milk to a 6-month-aged final product. KEY POINTS: • 271 ASVs were acquired from cheese production from raw milk to 6-month aging. • Addition of SLAB changed the microbial diversity during Cheddar cheese making procedure. • NSLAB were detected more than 15 weeks after aging. Graphical Abstract.


Assuntos
Queijo/microbiologia , Microbiota , Leite/microbiologia , Animais , Biodiversidade , Fermentação , Microbiologia de Alimentos , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/metabolismo
17.
Biofouling ; 36(4): 467-478, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32515601

RESUMO

In this study, the effect of three essential oils (EOs) - clove oil (CO), thyme oil (TO), and garlic oil (GO), which are generally recognized as safe - on the planktonic growth, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), motility, biofilm formation, and quorum sensing (QS) of Vibrio parahaemolyticus was investigated. All three EOs showed bacteriostatic activity, with MICs in the range 0.02%-0.09% (v/v). CO and TO completely controlled planktonic growth at 0.28% and 0.08% (v/v), which is four times their MIC (4 × MIC), after 10 min, whereas GO completely controlled growth at 0.36% (v/v) (4 × MIC) after treatment for 20 min. V. parahaemolyticus motility was significantly reduced by all three EOs at 4 × MIC (0.28% for CO, 0.08% for TO, and 0.36% for GO), whereas QS was controlled and biofilm formation reduced by all three EOs at 8 × MIC (0.56% for CO, 0.16% for TO, and 0.72% for GO) after 30 min of treatment. These results suggest that CO, TO, and GO have a significant inhibitory effect on V. parahaemolyticus cells in biofilm sand thus represent a promising strategy for improving food safety. These results provide the evidence required to encourage further research into the practical use of the proposed EOs in food preparation processes.


Assuntos
Óleos Voláteis , Vibrio parahaemolyticus , Biofilmes , Testes de Sensibilidade Microbiana , Percepção de Quorum
18.
Biofouling ; 36(10): 1243-1255, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33401969

RESUMO

The purpose of this research was to characterize Listeria monocytogenes from several environmental and clinical sources and assess the efficacy of single and combined physico-chemical treatments in reducing biofilm on lettuce leaves. PCR analysis of L. monocytogenes isolates collected from different clinical (10 strains) and environmental sources (12 strains) was used to look for the presence of one Listeria-specific gene and five virulence genes. Biofilms of L. monocytogenes were developed on lettuce leaves over 24 h. A 5-min ultrasound and a 300-ppm sodium hypochlorite (NaOCl) wash resulted in similar reductions in cell numbers of 0.82 log CFU cm-2. For chlorine dioxide (ClO2) at 60 ppm, the cell numbers were reduced by ∼5.45 log CFU cm-2. A combined treatment of 5 min of ultrasound plus 300 ppm NaOCl or 40 ppm ClO2, provided maximal efficacy, reducing the number of L. monocytogenes on the lettuce surface to non-detectable levels. Therefore, ClO2 has the potential to replace NaOCl for the disinfection of food products in the food industry.


Assuntos
Biofilmes , Listeria monocytogenes , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Microbiologia de Alimentos , Lactuca , Folhas de Planta
19.
Food Microbiol ; 91: 103500, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539983

RESUMO

The objective of this study was to investigate the antibacterial and antibiofilm activity of eugenol against V. parahaemolyticus planktonic and biofilm cells and the involved mechanisms as well. Atime-kill assay, a biofilm formation assay on the surface of crab shells, an assay to determine the reduction of virulence using eugenol at different concentrations, energy-filtered transmission electron microscope (EF-TEM), field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscope (CLSM) and high-performance liquid chromatography (HPLC) were performed to evaluate the antibacterial and antibiofilm activity of eugenol. The results indicated that different concentrations of eugenol (0.1-0.6%) significantly reduced biofilm formation, metabolic activities, and secretion of extracellular polysaccharide (EPS), with effective antibacterial effect. Eugenol at 0.4% effectively eradicated the biofilms formed by clinical and environmental V. parahaemolyticus on crab surface by more than 4.5 and 4 log CFU/cm2, respectively. At 0.6% concentration, the reduction rates of metabolic activities for ATCC27969 and NIFS29 were 79% and 68%, respectively. Whereas, the reduction rates of EPS for ATCC27969 and NIFS29 were 78% and 71%, respectively. On visual evaluation, significant results were observed for biofilm reduction, live/dead cell detection, and quorum sensing (QS). This study demonstrated that eugenol can be used to control V. parahaemolyticus biofilms and biofilm-related infections and can be employed for the protection of seafood.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Eugenol/farmacologia , Vibrio parahaemolyticus/efeitos dos fármacos , Animais , Biofilmes/crescimento & desenvolvimento , Braquiúros/microbiologia , Microbiologia de Alimentos , Conservantes de Alimentos/farmacologia , Testes de Sensibilidade Microbiana , Polissacarídeos Bacterianos/metabolismo , Percepção de Quorum/efeitos dos fármacos , Frutos do Mar/microbiologia , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/patogenicidade , Virulência/efeitos dos fármacos
20.
J Dairy Sci ; 103(5): 4026-4042, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32173012

RESUMO

Understanding the microbial community of cheese is important in the dairy industry, as the microbiota contributes to the safety, quality, and physicochemical and sensory properties of cheese. In this study, the microbial compositions of different cheeses (Cheddar, provolone, and Swiss cheese) and cheese locations (core, rind, and mixed) collected from the Arbuthnot Dairy Center at Oregon State University were analyzed using 16S rRNA gene amplicon sequencing with the Illumina MiSeq platform (Illumina, San Diego, CA). A total of 225 operational taxonomic units were identified from the 4,675,187 sequencing reads generated. Streptococcus was observed to be the most abundant organism in provolone (72 to 85%) and Swiss (60 to 67%), whereas Lactococcus spp. were found to dominate Cheddar cheese (27 to 76%). Species richness varied significantly by cheese. According to alpha diversity analysis, porter-soaked Cheddar cheese exhibited the highest microbial richness, whereas smoked provolone cheese showed the lowest. Rind regions of each cheese changed color through smoking and soaking for the beverage process. In addition, the microbial diversity of the rind region was higher than the core region because smoking and soaking processes directly contacted the rind region of each cheese. The microbial communities of the samples clustered by cheese, indicated that, within a given type of cheese, microbial compositions were very similar. Moreover, 34 operational taxonomic units were identified as biomarkers for different types of cheese through the linear discriminant analysis effect size method. Last, both carbohydrate and AA metabolites comprised more than 40% of the total functional annotated genes from 9 varieties of cheese samples. This study provides insight into the microbial composition of different types of cheese, as well as various locations within a cheese, which is applicable to its safety and sensory quality.


Assuntos
Bactérias/isolamento & purificação , Queijo/microbiologia , Animais , Bactérias/classificação , Bovinos , Indústria de Laticínios , Lactococcus , Microbiota , Oregon , RNA Bacteriano , RNA Ribossômico 16S , Streptococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA