Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; 14(14): e1704232, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29473293

RESUMO

High sensitivity and high stretchability are two conflicting characteristics that are difficult to achieve simultaneously in elastic strain sensors. A highly sensitive and stretchable strain sensor comprising a microstructured metal nanowire (mNW)/elastomer composite film is presented. The surface structure is easily prepared by combining an mNW coating and soft-lithographic replication processes in a simple and reproducible manner. The densely packed microprism-array architecture of the composite film leads to a large morphological change in the mNW percolation network by efficiently concentrating the strain in the valley regions upon stretching. Meanwhile, the percolation network comprising mNWs with a high aspect ratio is stable enough to prevent electrical failure, even under high strains. This enables the sensor to simultaneously satisfy high sensitivity (gauge factor ≈81 at >130% strain) and high stretchability (150%) while ensuring long-term reliability (10 000 cycles at 150% strain). The sensor can also detect strain induced by bending and pressure, thus demonstrating its potential as a versatile sensing tool. The sensor is successfully utilized to monitor a wide range of human motions in real time. Furthermore, the unique sensing mechanism is easily extended to detect more complex multiaxial strains by optimizing the surface morphology of the device.

2.
Nanotechnology ; 29(15): 155501, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29384503

RESUMO

Optical transparency is increasingly considered as one of the most important characteristics required in advanced stretchable strain sensors for application in body-attachable systems. In this paper, we present an entirely solution-processed fabrication route to highly transparent and stretchable resistive strain sensors based on silver nanowire microgrids (AgNW-MGs). The AgNW-MG strain sensors are readily prepared by patterning the AgNWs on a stretchable substrate into a MG geometry via a mesh-template-assisted contact-transfer printing. The MG has a unique architecture comprising the AgNWs and can be stretched to ε = 35%, with high gauge factors of ∼6.9 for ε = 0%-30% and ∼41.1 for ε = 30%-35%. The sensor also shows a high optical transmittance of 77.1% ± 1.5% (at 550 nm) and stably maintains the remarkable optical performance even at high strains. In addition, the sensor responses are found to be highly reversible with negligible hysteresis and are reliable even under repetitive stretching-releasing cycles (1000 cycles at ε = 10%). The practicality of the AgNW-MG strain sensor is confirmed by successfully monitoring a wide range of human motions in real time after firmly laminating the device onto various body parts.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Movimento/fisiologia , Nanotecnologia/métodos , Nanofios/química , Amplitude de Movimento Articular/fisiologia , Adulto , Cobre/química , Etilenoglicol/química , Humanos , Masculino , Exercícios de Alongamento Muscular , Nanotecnologia/instrumentação , Impressão/métodos , Nitrato de Prata/química , Resistência à Tração
3.
RSC Adv ; 11(2): 918-926, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35423695

RESUMO

Stretchable and skin-mountable heaters have found application in the emerging industry of wearable thermotherapy devices. However, despite their excellent heating performances, most of them commonly suffer from complex, time-consuming, costly, or insufficiently reproducible fabrication processes. In this study, we report a simple, economic, and reproducible strategy to fabricate high-performance stretchable heaters based on facile cut-patterning of plastic sheet/metal foil/plastic sheet (PMP) structures. Further, this method can be executed without expensive materials or cumbersome material synthesis. The fabricated PMP heater is confirmed to exhibit excellent and uniform heating performance at a low voltage and satisfactory electrothermal stability even under high strain and repeated loads. Additionally, the proposed heater designs can be easily customized by simply changing the computer-aided design drawings during the cutting process, which also enables fabrication of devices with large area. The fabricated PMP heater is confirmed to be able to maintain conformal contact with target surfaces even under stretched conditions, inducing a fairly uniform temperature distribution. Finally, it is successfully demonstrated that a PMP heating band can be easily worn on the wrist and is capable of transferring enough heat to increase blood perfusion in the heated area even at a low voltage, highlighting its potential in wearable thermotherapy.

4.
ACS Appl Mater Interfaces ; 12(40): 45590-45601, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32914629

RESUMO

Despite their extraordinary mechanosensitivities, most channel-like crack-based strain sensors are limited by their poor levels of stretchability and linearity. This work presents a simple yet efficient way of modulating the cracking structure of thin metal films on elastomers to facilitate the development of high-performance wearable strain sensors. A net-shaped crack structure based on a thin platinum (Pt) film can be produced by coating an elastomer surface with M13 bacteriophages (phages) and consequently engineering the surface strain upon stretching. This process produces a Pt-on-phage (PoP) strain sensor that simultaneously exhibits high levels of stretchability (24%), sensitivity (maximum gauge factor ≈ 845.6 for 20-24%), and linearity (R2 ≈ 0.988 up to 20%). In addition, the sensor performance can be further modulated by either changing the phage coating volume or adding a silver nanowire coating to the PoP sensor film. The balanced strain-sensing performance, combined with fast response times and high levels of mechanical flexibility and operational stability, enables the devices to detect a wide range of human motions in real time after being attached to various body parts. Furthermore, PoP-based strain sensors can be usefully extended to detect more complex multidimensional strains through further strain engineering on a cross-patterned PoP film.

5.
Nanoscale ; 10(11): 5105-5113, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29446415

RESUMO

Highly stretchable strain sensors that are capable of collecting complex multi-axial, multidimensional strain information in real time are crucial in practical applications for human motion detection. Here we present a highly sensitive and selective multidimensional resistive strain sensor based on a monolithic integration of a stiffness-variant stretchable substrate and sensing film comprising a cross-shaped silver nanowire percolation network in a single device. The multidimensional strain sensor efficiently distinguishes strains in various directions with a large gauge factor (GF) of >20 and a wide strain-detectable range of up to 60%. The sensor also features a maximum difference in GF between the x- and y-axes of >20 and long-term performance stability for up to 500 strain cycles. The practicality of the sensor as a human motion detector is demonstrated by attaching it directly to a part of the human body and measuring the multidimensional strains that occur during motions in real time.

6.
ACS Appl Mater Interfaces ; 9(20): 17499-17507, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28471157

RESUMO

Wearable pressure sensors are crucial building blocks for potential applications in real-time health monitoring, artificial electronic skins, and human-to-machine interfaces. Here we present a highly sensitive, simple-architectured wearable resistive pressure sensor based on highly compliant yet robust carbon composite conductors made of a vertically aligned carbon nanotube (VACNT) forest embedded in a polydimethylsiloxane (PDMS) matrix with irregular surface morphology. A roughened surface of the VACNT/PDMS composite conductor is simply formed using a sandblasted silicon master in a low-cost and potentially scalable manner and plays an important role in improving the sensitivity of resistive pressure sensor. After assembling two of the roughened composite conductors, our sensor shows considerable pressure sensitivity of ∼0.3 kPa-1 up to 0.7 kPa as well as stable steady-state responses under various pressures, a wide detectable range of up to 5 kPa before saturation, a relatively fast response time of ∼162 ms, and good reproducibility over 5000 cycles of pressure loading/unloading. The fabricated pressure sensor can be used to detect a wide range of human motions ranging from subtle blood pulses to dynamic joint movements, and it can also be used to map spatial pressure distribution in a multipixel platform (in a 4 × 4 pixel array).

7.
ACS Appl Mater Interfaces ; 9(23): 19612-19621, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28534393

RESUMO

Recent efforts to develop stretchable resistive heaters open up the possibility for their use in wearable thermotherapy applications. Such heaters should have high electrothermal performance and stability to be used practically, and the fabrication must be simple, economic, reproducible, and scalable. Here we present a simple yet highly efficient way of producing high-performance stretchable heaters, which is based on a facile kirigami pattering (the art of cutting and folding paper) of a highly conductive paper for practical wearable thermotherapy. The resulting kirigami heater exhibits high heating performance at low voltage (>40 °C at 1.2 V) and fast thermal response (<60 s). The simple kirigami patterning approach enables the heater to be extremely stretchable (>400%) while stably retaining its excellent performance. Furthermore, the heater shows the uniform spatial distribution of heat over the whole heating area and is highly durable (1000 cycles at 300% strain). The heater attached to curvilinear body parts shows stable heating performance even under large motions while maintaining intimate conformal contact with the skin thanks to the high stretchability and sufficient restoring force. The usability of the heater as a wearable thermotherapy device is demonstrated by increased blood flow at the wrist during operation.


Assuntos
Dispositivos Eletrônicos Vestíveis , Calefação , Temperatura Alta , Hipertermia Induzida
8.
Sci Rep ; 5: 13757, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26334322

RESUMO

Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature's inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future.


Assuntos
Bacteriófago M13/química , Bacteriófago M13/fisiologia , Colorimetria/instrumentação , Calefação/instrumentação , Iluminação/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Temperatura
9.
ACS Appl Mater Interfaces ; 7(9): 5289-95, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25688451

RESUMO

Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of <3.5°) in the Cassie-Baxter wetting regime, considerable dynamic water repellency (with perfect bouncing of a water droplet dropped from an impact height of 30 mm), and good optical transparency (>82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA