RESUMO
Porous liquids (PLs) are attractive materials because of their capability to combine the intrinsic porosity of microporous solids and the processability of liquids. Most of the studies focus on the synthesis of PLs with not only high porosity but also low viscosity by considering their transportation in industrial plants. However, a gap exists between PLs and solid adsorbents for some practical cases, where the liquid characteristics and mechanical stability without leakage are simultaneously required. Here, we fill in this gap by demonstrating a new concept of pore-networked gels, in which the solvent phase is trapped by molecular networks with accessible porosity. To achieve this, we fabricate a linked metal-organic polyhedra (MOPs) gel, followed by exchanging the solvent phase with a bulky liquid such as ionic liquids (ILs); the dimethylformamide solvent trapped inside the as-synthesized gel is replaced by the target IL, 1-butyl-3-methylimidazolium tetrafluoroborate, which in turn cannot enter MOP pores due to their larger molecular size. The remaining volatile solvents in the MOP cavities can then be removed by thermal activation, endowing the obtained IL gel (Gel_IL) with accessible microporosity. The CO2 capacities of the gels are greatly enhanced compared to the neat IL. The exchange with the IL also exerts a positive influence on the final gel performances such as mechanical properties and low volatility. Besides ILs, various functional liquids are shown to be amenable to this strategy to fabricate pore-networked gels with accessible porosity, demonstrating their potential use in the field of gas adsorption or separation.
RESUMO
Covalent organic frameworks (COFs) have entered the stage as a new generation of porous polymers which stand out by virtue of their crystallinity, diverse framework topologies and accessible pore systems. An important - but still underdeveloped - feature of COFs is their potentially superior stability in comparison to other porous materials. Achieving COFs which are simultaneously crystalline, stable, and functional is still challenging as reversible bond formation is one of the prime prerequisites for the crystallization of COFs. However, as the COF field matures new strategies have surfaced that bypass this crystallinity - stability dichotomy. Three major approaches for obtaining both stable and crystalline COFs have taken form in recent years: Tweaking the reaction conditions for reversible linkages, separating the order inducing step and the stability inducing step, and controlling the structural degrees of freedom during assembly and in the final COF. This review discusses rational approaches to stability and crystallinity engineering in COFs, which are apt at overcoming current challenges in COF design and open up new avenues to new real-world applications of COFs.
RESUMO
At its core, reticular chemistry has translated the precision and expertise of organic and inorganic synthesis to the solid state. While initial excitement over metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) was undoubtedly fueled by their unprecedented porosity and surface areas, the most profound scientific innovation of the field has been the elaboration of design strategies for the synthesis of extended crystalline solids through strong directional bonds. In this contribution we highlight the different classes of reticular materials that have been developed, how these frameworks can be functionalized, and how complexity can be introduced into their backbones. Finally, we show how the structural control over these materials is being extended from the molecular scale to their crystal morphology and shape on the nanoscale, all the way to their shaping on the bulk scale.
RESUMO
Reticular framework materials thrive on designability, but unexpected reaction outcomes are crucial in exploring new structures and functionalities. By combining "incompatible" building blocks, we employed geometric frustration in reticular materials leading to emergent structural features. The combination of a pseudo-C5-symmetrical organic building unit based on a pyrrole core with a C4-symmetrical copper paddlewheel synthon led to three distinct frameworks by tuning the synthetic conditions. The frameworks show structural features typical for geometric frustration: self-limiting assembly, internally stressed equilibrium structures, and topological defects in the equilibrium structure, which manifested in formation of a hydrogen-bonded framework, distorted and broken secondary building units, and dangling functional groups, respectively. The influence of geometric frustration on the CO2 sorption behavior and the discovery of a new secondary building unit shows geometric frustration can serve as a strategy to obtain highly complex porous frameworks.
RESUMO
Reticular materials are of high interest for diverse applications, ranging from catalysis and separation to gas storage and drug delivery. These open, extended frameworks can be tailored to the intended application through crystal-structure design. Implementing these materials in application settings, however, requires structuring beyond their lattices, to interface the functionality at the molecular level effectively with the macroscopic world. To overcome this barrier, efforts in expressing structural control across molecular, nano-, meso-, and bulk regimes is the essential next step. In this Review, we give an overview of recent advances in using self-assembly as well as externally controlled tools to manufacture reticular materials over all the length scales. We predict that major research advances in deploying these two approaches will facilitate the use of reticular materials in addressing major needs of society.
RESUMO
Covalent organic frameworks (COFs) are an extensively studied class of porous materials, which distinguish themselves from other porous polymers in their crystallinity and high degree of modularity, enabling a wide range of applications. COFs are most commonly synthesized solvothermally, which is often a time-consuming process and restricted to well-soluble precursor molecules. Synthesis of polyimide-linked COFs (PI-COFs) is further complicated by the poor reversibility of the ring-closing reaction under solvothermal conditions. Herein, we report the ionothermal synthesis of crystalline and porous PI-COFs in zinc chloride and eutectic salt mixtures. This synthesis does not require soluble precursors and the reaction time is significantly reduced as compared to standard solvothermal synthesis methods. In addition to applying the synthesis to previously reported imide COFs, a new perylene-based COF was also synthesized, which could not be obtained by the classical solvothermal route. In situ high-temperature XRPD analysis hints to the formation of precursor-salt adducts as crystalline intermediates, which then react with each other to form the COF.
RESUMO
The electrochemical splitting of water holds promise for the storage of energy produced intermittently by renewable energy sources. The evolution of hydrogen currently relies on the use of platinum as a catalyst-which is scarce and expensive-and ongoing research is focused towards finding cheaper alternatives. In this context, 2D polymers grown as single layers on surfaces have emerged as porous materials with tunable chemical and electronic structures that can be used for improving the catalytic activity of metal surfaces. Here, we use designed organic molecules to fabricate covalent 2D architectures by an Ullmann-type coupling reaction on Au(111). The polymer-patterned gold electrode exhibits a hydrogen evolution reaction activity up to three times higher than that of bare gold. Through rational design of the polymer on the molecular level we engineered hydrogen evolution activity by an approach that can be easily extended to other electrocatalytic reactions.
RESUMO
We demonstrate photocatalytic hydrogen evolution using COF photosensitizers with molecular proton reduction catalysts for the first time. With azine-linked N2-COF photosensitizer, chloro(pyridine)cobaloxime co-catalyst, and TEOA donor, H2 evolution rate of 782 µmol h-1 g-1 and TON of 54.4 has been obtained in a water/acetonitrile mixture. PXRD, solid-state spectroscopy, EM analysis, and quantum-chemical calculations suggest an outer sphere electron transfer from the COF to the co-catalyst which subsequently follows a monometallic pathway of H2 generation from the CoIII-hydride and/or CoII-hydride species.
RESUMO
Organic solids such as covalent organic frameworks (COFs), porous polymers and carbon nitrides have garnered attention as a new generation of photocatalysts that offer tunability of their optoelectronic properties both at the molecular level and at the nanoscale. Owing to their inherent porosity and well-ordered nanoscale architectures, COFs are an especially attractive platform for the rational design of new photocatalysts for light-induced hydrogen evolution. In this report, our previous design strategy of altering the nitrogen content in an azine-linked COF platform to tune photocatalytic hydrogen evolution is extended to a pyridine-based photocatalytically active framework, where nitrogen substitution in the peripheral aryl rings reverses the polarity compared to the previously studied materials. We demonstrate how simple changes at the molecular level translate into significant differences in atomic-scale structure, nanoscale morphology and optoelectronic properties, which greatly affect the photocatalytic hydrogen evolution efficiency. In an effort to understand the complex interplay of such factors, we carve out the conformational flexibility of the PTP-COF precursor and the vertical radical anion stabilization energy as important descriptors to understand the performance of the COF photocatalysts.
RESUMO
Covalent Organic Frameworks (COFs) exhibiting kagome (kgm) structures are promising crystalline porous materials with two distinct pores. However, there are no reliable synthetic methods to exclusively target the kgm over the polymorphic square-lattice (sql) structure. To address this, we introduce a linker design strategy featuring bulky functional groups, which through steric interactions can hinder the sql net formation, thereby leading to a kgm structure. By rigid attachment of the methyl benzoate groups to a tetradentate COF linker, steric interactions with neighbouring linkers depending on the pore size become possible. The steric interaction was tuned by varying the complementary bidentate linear linker lengths, where the shorter phenylenediamine linker leads to steric hindrance and the formation of the kgm lattice, while with the longer benzidine linker, steric interaction is reduced leading to the sql lattice. Thus, control over the net can be exerted through steric interaction strengths. Additionally, structural analysis revealed the formation of the kgm COF with an unusual ABC stacking, leading to pearl string type pores instead of two distinct pore sizes. This COF system shows that steric interaction-driven design enhances control over COF structures, expanding the design toolbox, but also provides valuable insights into network formation and polymorphism.
RESUMO
Introduction of porosity into supramolecular gels endows soft materials with functionalities for molecular encapsulation, release, separation and conversion. Metal-organic polyhedra (MOPs), discrete coordination cages containing an internal cavity, have recently been employed as building blocks to construct polymeric gel networks with potential porosity. However, most of the materials can only be synthesized in organic solvents, and the examples of porous, MOP-based hydrogels are scarce. Here, we demonstrate the fabrication of porous hydrogels based on [Rh2 (OH-bdc)2 ]12 , a rhodium-based MOP containing hydroxyl groups on its periphery (OH-bdc=5-hydroxy-1,3-benzenedicarboxylate). By simply deprotonating [Rh2 (OH-bdc)2 ]12 with the base NaOH, the supramolecular polymerization between MOPs and organic linkers can be induced in the aqueous solution, leading to the kinetically controllable formation of hydrogels with hierarchical colloidal networks. When heating the deprotonated MOP, Nax [Rh24 (O-bdc)x (OH-bdc)24-x ], to induce gelation, the MOP was found to partially decompose, affecting the mechanical property of the resulting gels. By applying a post-synthetic deprotonation strategy, we show that the deprotonation degree of the MOP can be altered after the gel formation without serious decomposition of the MOPs. Gas sorption measurements confirmed the permanent porosity of the corresponding aerogels obtained from these MOP-based hydrogels, showing potentials for applications in gas sorption and catalysis.
RESUMO
Covalent organic frameworks (COFs) offer a number of key properties that predestine them to be used as heterogeneous photocatalysts, including intrinsic porosity, long-range order, and light absorption. Since COFs can be constructed from a practically unlimited library of organic building blocks, these properties can be precisely tuned by choosing suitable linkers. Herein, we report the construction and use of a novel COF (FEAx-COF) photocatalyst, inspired by natural flavin cofactors. We show that the functionality of the alloxazine chromophore incorporated into the COF backbone is retained and study the effects of this heterogenization approach by comparison with similar molecular photocatalysts. We find that the integration of alloxazine chromophores into the framework significantly extends the absorption spectrum into the visible range, allowing for photocatalytic oxidation of benzylic alcohols to aldehydes even with low-energy visible light. In addition, the activity of the heterogeneous COF photocatalyst is less dependent on the chosen solvent, making it more versatile compared to molecular alloxazines. Finally, the use of oxygen as the terminal oxidant renders FEAx-COF a promising and "green" heterogeneous photocatalyst.
RESUMO
Assembly of permanently porous metal-organic polyhedra/cages (MOPs) with bifunctional linkers leads to soft supramolecular networks featuring both porosity and processability. However, the amorphous nature of such soft materials complicates their characterization and thus limits rational structural control. Here we demonstrate that aging is an effective strategy to control the hierarchical network of supramolecular gels, which are assembled from organic ligands as linkers and MOPs as junctions. Normally, the initial gel formation by rapid gelation leads to a kinetically trapped structure with low controllability. Through a controlled post-synthetic aging process, we show that it is possible to tune the network of the linked MOP gel over multiple length scales. This process allows control on the molecular-scale rearrangement of interlinking MOPs, mesoscale fusion of colloidal particles and macroscale densification of the whole colloidal network. In this work we elucidate the relationships between the gel properties, such as porosity and rheology, and their hierarchical structures, which suggest that porosity measurement of the dried gels can be used as a powerful tool to characterize the microscale structural transition of their corresponding gels. This aging strategy can be applied in other supramolecular polymer systems particularly containing kinetically controlled structures and shows an opportunity to engineer the structure and the permanent porosity of amorphous materials for further applications.
RESUMO
Interactions between extended π-systems are often invoked as the main driving force for stacking and crystallization of 2D organic polymers. In covalent organic frameworks (COFs), the stacking strongly influences properties such as the accessibility of functional sites, pore geometry, and surface states, but the exact nature of the interlayer interactions is mostly elusive. The stacking mode is often identified as eclipsed based on observed high symmetry diffraction patterns. However, as pointed out by various studies, the energetics of eclipsed stacking are not favorable and offset stacking is preferred. This work presents lower and higher apparent symmetry modifications of the imine-linked TTI-COF prepared through high- and low-temperature reactions. Through local structure investigation by pair distribution function analysis and simulations of stacking disorder, we observe random local layer offsets in the low temperature modification. We show that while stacking disorder can be easily overlooked due to the apparent crystallographic symmetry of these materials, total scattering methods can help clarify this information and suggest that defective local structures could be much more prevalent in COFs than previously thought. A detailed analysis of the local structure helps to improve the search for and design of highly porous tailor-made materials.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Covalent organic frameworks (COFs) are typically designed by breaking down the desired network into feasible building blocks - either simple and highly symmetric, or more convoluted and thus less symmetric. The linkers are chosen complementary to each other such that an extended, fully condensed network structure can form. We show not only an exception, but a design principle that allows breaking free of such design rules. We show that tri- and tetratopic linkers can be combined to form imine-linked [4 + 3] sub-stoichiometric 2D COFs featuring an unexpected bex net topology, and with periodic uncondensed amine functionalities which enhance CO2 adsorption, can be derivatized in a subsequent reaction, and can also act as organocatalysts. We further extend this class of nets by including a ditopic linker to form [4 + 3 + 2] COFs. The results open up possibilities towards a new class of sub-valent COFs with unique structural, topological and compositional complexities for diverse applications.
RESUMO
Stabilization of covalent organic frameworks (COFs) by post-synthetic locking strategies is a powerful tool to push the limits of COF utilization, which are imposed by the reversible COF linkage. Here we introduce a sulfur-assisted chemical conversion of a two-dimensional imine-linked COF into a thiazole-linked COF, with full retention of crystallinity and porosity. This post-synthetic modification entails significantly enhanced chemical and electron beam stability, enabling investigation of the real framework structure at a high level of detail. An in-depth study by electron diffraction and transmission electron microscopy reveals a myriad of previously unknown or unverified structural features such as grain boundaries and edge dislocations, which are likely generic to the in-plane structure of 2D COFs. The visualization of such real structural features is key to understand, design and control structure-property relationships in COFs, which can have major implications for adsorption, catalytic, and transport properties of such crystalline porous polymers.
RESUMO
Covalent organic frameworks (COFs) are a new class of nanoporous polymeric vector showing promise as drug-delivery vehicles with high loading capacity and biocompatibility. The interaction between the carrier and the cargo is specifically tailored on a molecular level by H-bonding. Cell-proliferation studies indicate higher efficacy of the drug in cancer cells by nanocarrier delivery mediated by the COF.