Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Transl Gastroenterol ; 15(3): e00666, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088382

RESUMO

INTRODUCTION: Perturbations in aromatic (AAAs) and branched-chain amino acids (BCAAs) are seen in decompensated liver disease. The aim of this study was to evaluate the dynamic, postprandial relationship between hepatitis C virus-induced liver disease and amino acid concentrations in patients with compensated liver disease. METHODS: Patients infected with hepatitis C virus underwent a baseline liver biopsy to determine Ishak Fibrosis Score and evaluate the liver transcriptome. Patients ate a standard meal and underwent peripheral vein sampling at defined intervals. Quantitative analysis of amino acids was performed using liquid chromatography-tandem mass spectrometry. RESULTS: At baseline, there was no difference in AAA and BCAA concentrations between patients with cirrhosis and non-cirrhotic patients. After a standard meal, AAAs, but not BCAAs, were elevated in patients with cirrhosis compared with non-cirrhotic patients at every time point. The HepQuant SHUNT fraction was significantly higher in patients with cirrhosis and positively correlated with AAA concentration at all time points, but not BCAA. Analysis of the hepatic transcriptome demonstrated greater downregulation of the AAA degradation pathways than the BCAA degradation pathways. DISCUSSION: At baseline, cirrhotic patients with compensated liver disease have adequate reserve liver function to metabolize AAAs and BCAAs. When faced with a metabolic stressor, such as a standard meal, patients with cirrhosis are less able to metabolize the increased load of AAAs. This impairment correlates with portosystemic shunting. Further evaluation of AAA levels in compensated liver disease might further the understanding of the liver-muscle axis and the role it may play in the development of sarcopenia in liver disease.


Assuntos
Hepatite C , Hepatopatias , Humanos , Aminoácidos Aromáticos , Hepacivirus/genética , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Aminoácidos , Aminoácidos de Cadeia Ramificada , Hepatite C/complicações
2.
Hepatol Commun ; 8(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967598

RESUMO

BACKGROUND: Bile acids mediate gut-liver cross-talk through bile acid receptors. Serum, hepatic, and microbial bile acid metabolism was evaluated in HCV-compensated chronic liver disease. METHODS: Patients underwent liver biopsy; portal and peripheral blood were obtained before (HCVi), and 6 months after sustained virologic response (SVR), splenic blood was obtained only after SVR. The fecal microbiome and liver transcriptome were evaluated using RNA-Seq. Twenty-four bile acids were measured in serum, summed as free, taurine-conjugated bile acids (Tau-BAs), and glycine-conjugated bile acids. RESULTS: Compared to SVR, HCVi showed elevated conjugated bile acids, predominantly Tau-BA, compounded in HCVi cirrhosis. In the liver, transcription of bile acids uptake, synthesis, and conjugation was decreased with increased hepatic spillover into systemic circulation in HCVi. There was no difference in the transcription of microbial bile acid metabolizing genes in HCVi. Despite an overall decrease, Tau-BA remained elevated in SVR cirrhosis, mainly in splenic circulation. Only conjugated bile acids, predominantly Tau-BA, correlated with serum proinflammatory markers and hepatic proinflammatory pathways, including NLRP3 and NFKB. Among hepatic bile acid receptors, disease-associated conjugated bile acids showed the strongest association with hepatic spingosine-1-phosphate receptor 2 (S1PR2). CONCLUSIONS: Enhanced expression of hepatic S1PR2 in HCVi and HCVi-cirrhosis and strong associations of S1PR2 with Tau-BAs suggest pathological relevance of Tau-BA-hepatic S1PR2 signaling in chronic liver disease. These findings have therapeutic implications in chronic liver diseases.


Assuntos
Ácidos e Sais Biliares , Fígado , Receptores de Esfingosina-1-Fosfato , Taurina , Humanos , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Masculino , Taurina/sangue , Feminino , Pessoa de Meia-Idade , Fígado/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/metabolismo , Hepatite C Crônica/complicações , Cirrose Hepática/metabolismo , Cirrose Hepática/virologia , Microbioma Gastrointestinal , Resposta Viral Sustentada , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adulto , Idoso
3.
Methods Protoc ; 6(6)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37987359

RESUMO

Cell-free RNAs (cfRNAs) are promising analytes as non-invasive biomarkers and have even greater potential if tied in with metabolomics. Plasma is an optimal source for cfRNAs but is often derived from a variety of anticoagulants. Plasma obtained in heparin is suitable for metabolomics but is difficult to utilize for qPCR-based downstream analysis. In the present study, we aimed to develop a simple, time-efficient, and cost-effective heparinase protocol, followed by library preparation and sequencing of human plasma cfRNAs drawn and stored in heparin at -80 °C for several years. Blood was collected in CPT™ sodium heparin tubes from patients with chronic HCV infection (NCT02400216) at the National Institutes of Health (NIH) Clinical Center. Plasma cfRNAs were treated with heparinase I and used for library preparation and next-generation sequencing (NGS). Heparinase treatment maintained RNA integrity and allowed for successful library preparation for all the study subjects even with 7 ng of cfRNAs as starting material. The classification report derived from Pavian R package v1.2.0 showed no artificial reads. The abundance of chordate over microbial reads suggests no addition of experimental error through heparinase I treatment. We report a novel and practical approach to heparinase treatment for human plasma collected and frozen in sodium heparin for several years. This is an effective demonstration of utilizing heparin plasma for NGS and downstream transcriptomic research, which could then be integrated with metabolomics from the same samples, maximizing efficiency and minimizing blood draws.

4.
Nat Microbiol ; 8(1): 12-27, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522461

RESUMO

The gut and liver are connected via the portal vein, and this relationship, which includes the gut microbiome, is described as the gut-liver axis. Hepatitis C virus (HCV) can infect the liver and cause fibrosis with chronic infection. HCV has been associated with an altered gut microbiome; however, how these changes impact metabolism across the gut-liver axis and how this varies with disease severity and time is unclear. Here we used multi-omics analysis of portal and peripheral blood, faeces and liver tissue to characterize the gut-liver axis of patients with HCV across a fibrosis severity gradient before (n = 29) and 6 months after (n = 23) sustained virologic response, that is, no detection of the virus. Fatty acids were the major metabolites perturbed across the liver, portal vein and gut microbiome in HCV, especially in patients with cirrhosis. Decreased fatty acid degradation by hepatic peroxisomes and mitochondria was coupled with increased free fatty acid (FFA) influx to the liver via the portal vein. Metatranscriptomics indicated that Anaerostipes hadrus-mediated fatty acid synthesis influences portal FFAs. Both microbial fatty acid synthesis and portal FFAs were associated with enhanced hepatic fibrosis. Bacteroides vulgatus-mediated intestinal glycan breakdown was linked to portal glycan products, which in turn correlated with enhanced portal inflammation in HCV. Paired comparison of patient samples at both timepoints showed that hepatic metabolism, especially in peroxisomes, is persistently dysregulated in cirrhosis independently of the virus. Sustained virologic response was associated with a potential beneficial role for Methanobrevibacter smithii, which correlated with liver disease severity markers. These results develop our understanding of the gut-liver axis in HCV and non-HCV liver disease aetiologies and provide a foundation for future therapies.


Assuntos
Hepatite C , Multiômica , Humanos , Cirrose Hepática , Hepatite C/complicações , Hepacivirus/genética
5.
Biol Open ; 10(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33504488

RESUMO

Regulation of cell architecture is critical in the formation of tissues during animal development. The mechanisms that control cell shape must be both dynamic and stable in order to establish and maintain the correct cellular organization. Previous work has identified Shroom family proteins as essential regulators of cell morphology during vertebrate development. Shroom proteins regulate cell architecture by directing the subcellular distribution and activation of Rho-kinase, which results in the localized activation of non-muscle myosin II. Because the Shroom-Rock-myosin II module is conserved in most animal model systems, we have utilized Drosophila melanogaster to further investigate the pathways and components that are required for Shroom to define cell shape and tissue architecture. Using a phenotype-based heterozygous F1 genetic screen for modifiers of Shroom activity, we identified several cytoskeletal and signaling protein that may cooperate with Shroom. We show that two of these proteins, Enabled and Short stop, are required for ShroomA-induced changes in tissue morphology and are apically enriched in response to Shroom expression. While the recruitment of Ena is necessary, it is not sufficient to redefine cell morphology. Additionally, this requirement for Ena appears to be context dependent, as a variant of Shroom that is apically localized, binds to Rock, but lacks the Ena binding site, is still capable of inducing changes in tissue architecture. These data point to important cellular pathways that may regulate contractility or facilitate Shroom-mediated changes in cell and tissue morphology.


Assuntos
Biomarcadores , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Morfogênese , Animais , Forma Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Especificidade de Órgãos/genética , Organogênese , Fenótipo , Transdução de Sinais
6.
Open Forum Infect Dis ; 8(11): ofaa496, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35559125

RESUMO

Background: Increased microbial translocation (MT) into the systemic circulation is associated with liver disease progression. Microbial translocation has yet to be completely defined in chronic hepatitis B virus (HBV) and chronic hepatitis delta virus (HDV). Methods: Our aim was to characterize MT and associated immune response in chronic HBV and HDV at various stages of disease. Serum from 53 HBV, 43 HDV, and 36 healthy control (HC) subjects was obtained. Subjects were categorized by aspartate aminotransferase-to-platelet ratio index into mild (<0.5), moderate, and severe (>1.0) disease. Cytokines, microbial products, and microbial deoxyribonucleic acid (DNA) levels were assessed in a single treatment-naive time point for each patient. Next-generation sequencing identified bacterial species present within patient sera. Results: The HBV and HDV subjects display higher serum concentrations of Gram-negative (G-) bacterial lipopolysaccharide and fungal beta-glucan compared with HC (all P < .01). Gram-positive (G+) bacterial peptidoglycan is higher in HBV compared to HDV and HC (both P < .0001). Within both disease cohorts, peptidoglycan correlates with interleukin (IL)-1b, IL-8, IL-12p70, and IL-13 (all Spearman's rho >0.45; P < .05). Next-generation sequencing from 7 subjects with detectable serum bacterial DNA revealed changes in abundance of bacterial taxa and a higher proportion of Gram-positive genera in severe disease. Greater G+/G- taxa ratio is associated with higher cytokine levels and disease markers. Conclusions: The HBV and HDV patients display increased translocation of bacterial and fungal products into serum. An increased proportion of Gram-positive genera is associated with disease progression. Correlations of peptidoglycan with antimicrobial cytokines suggest that particular microbial classes may contribute to systemic inflammation and possibly disease progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA