Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38796690

RESUMO

Read-through chimeric RNAs are being recognized as a means to expand the functional transcriptome and contribute to cancer tumorigenesis when mis-regulated. However, current software tools often fail to predict them. We have developed RTCpredictor, utilizing a fast ripgrep tool to search for all possible exon-exon combinations of parental gene pairs. We also added exonic variants allowing searches containing common SNPs. To our knowledge, it is the first read-through chimeric RNA specific prediction method that also provides breakpoint coordinates. Compared with 10 other popular tools, RTCpredictor achieved high sensitivity on a simulated and three real datasets. In addition, RTCpredictor has less memory requirements and faster execution time, making it ideal for applying on large datasets.


Assuntos
Análise de Sequência de RNA , Software , Análise de Sequência de RNA/métodos , Humanos , RNA/genética , Biologia Computacional/métodos , Éxons , Algoritmos , Polimorfismo de Nucleotídeo Único
2.
Pflugers Arch ; 470(3): 471-480, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29288332

RESUMO

We previously reported that EGFR tyrosine kinase (EGFRtk) activity and endoplasmic reticulum (ER) stress are enhanced in type 2 diabetic (T2D) mice and cause vascular dysfunction. In the present study, we determined the in vivo contribution of EGFRtk and ER stress in acute myocardial infarction induced by acute ischemia (40 min)-reperfusion (24 h) (I/R) injury in T2D (db-/db-) mice. We treated db-/db- mice with EGFRtk inhibitor (AG1478, 10 mg/kg/day) for 2 weeks. Mice were then subjected to myocardial I/R injury. The db-/db- mice developed a significant infarct after I/R injury. The inhibition of EGFRtk significantly reduced the infarct size and ER stress induction. We also determined that the inhibition of ER stress (tauroursodeoxycholic acid, TUDCA, 150 mg/kg per day) in db-/db- significantly decrease the infarct size indicating that ER stress is a downstream mechanism to EGFRtk. Moreover, AG1478 and TUDCA reduced myocardium p38 and ERK1/2 MAP-kinases activity, and increased the activity of the pro-survival signaling cascade Akt. Additionally, the inhibition of EGFRtk and ER stress reduced cell apoptosis and the inflammation as indicated by the reduction in macrophages and neutrophil infiltration. We determined for the first time that the inhibition of EGFRtk protects T2D heart against I/R injury through ER stress-dependent mechanism. The cardioprotective effect of EGFRtk and ER stress inhibition involves the activation of survival pathway, and inhibition of apoptosis, and inflammation. Thus, targeting EGFRtk and ER stress has the potential for therapy to overcome myocardial infarction in T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Estresse do Retículo Endoplasmático , Receptores ErbB/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Apoptose , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico , Tirfostinas/farmacologia , Tirfostinas/uso terapêutico
3.
Am J Pathol ; 187(11): 2590-2601, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28837799

RESUMO

Recently, IL-12 emerged as a critical player in type 2 diabetes complications. We previously reported that ischemia-induced angiogenesis is compromised in type 2 diabetic mice. In this study, we determined that IL-12 disruption rescued angiogenesis and arteriogenesis in type 2 diabetic mice. To induce type 2 diabetes, wild-type (WT), p40IL-12-/- (p40-/-), and p35IL-12-/- (p35-/-) mice were fed a high-fat diet (HFD) for 12 weeks. Body weight, glucose test tolerance, and insulin test tolerance were assessed. After 12 weeks of an HFD, the femoral artery was ligated and blood flow recovery was measured every week for 4 weeks. WT, p40-/-, and p35-/- mice fed an HFD become obese after 12 weeks and exhibit glucose intolerance and insulin resistance. Blood flow recovery was fully restored in 2 to 3 weeks after femoral artery ligation in all groups of mice fed a normal diet. However, after 12 weeks of an HFD, blood flow recovery was compromised in WT mice, whereas it was fully recovered in p40-/- and p35-/- mice. The mechanism of blood flow recovery involves an increase in capillary/arteriole density, endothelial nitric oxide synthase/Akt/vascular endothelial growth factor receptor 2 signaling, and a reduction in oxidative stress and inflammation. The disruption of IL-12 promotes angiogenesis and increases blood flow recovery in obese type 2 diabetic mice by an endothelial nitric oxide synthase/Akt/vascular endothelial growth factor receptor 2/oxidative stress-inflammation-dependent mechanism.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Interleucina-12/metabolismo , Neovascularização Patológica/metabolismo , Animais , Dieta Hiperlipídica , Endotélio Vascular/patologia , Resistência à Insulina/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Estresse Oxidativo
4.
Arterioscler Thromb Vasc Biol ; 36(9): 1900-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27470514

RESUMO

OBJECTIVES: Chronic hypertension is the most critical risk factor for cardiovascular disease, heart failure, and stroke. APPROACH AND RESULTS: Here we show that wild-type mice infused with angiotensin II develop hypertension, cardiac hypertrophy, perivascular fibrosis, and endothelial dysfunction with enhanced stromal interaction molecule 1 (STIM1) expression in heart and vessels. All these pathologies were significantly blunted in mice lacking STIM1 specifically in smooth muscle (Stim1(SMC-/-)). Mechanistically, STIM1 upregulation during angiotensin II-induced hypertension was associated with enhanced endoplasmic reticulum stress, and smooth muscle STIM1 was required for endoplasmic reticulum stress-induced vascular dysfunction through transforming growth factor-ß and nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways. Accordingly, knockout mice for the endoplasmic reticulum stress proapoptotic transcriptional factor, CCAAT-enhancer-binding protein homologous protein (CHOP(-/-)), were resistant to hypertension-induced cardiovascular pathologies. Wild-type mice infused with angiotensin II, but not Stim1(SMC-/-) or CHOP(-/-) mice showed elevated vascular nicotinamide adenine dinucleotide phosphate oxidase activity and reduced phosphorylated endothelial nitric oxide synthase, cGMP, and nitrite levels. CONCLUSIONS: Thus, smooth muscle STIM1 plays a crucial role in the development of hypertension and associated cardiovascular pathologies and represents a promising target for cardiovascular therapy.


Assuntos
Pressão Sanguínea , Cardiomegalia/metabolismo , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Vasodilatação , Angiotensina II , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático , Fibrose , Predisposição Genética para Doença , Hipertensão/genética , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Masculino , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos/metabolismo , Fenótipo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Molécula 1 de Interação Estromal/deficiência , Molécula 1 de Interação Estromal/genética , Fatores de Tempo , Fator de Transcrição CHOP/deficiência , Fator de Transcrição CHOP/genética , Fator de Crescimento Transformador beta/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
5.
Genes (Basel) ; 12(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805149

RESUMO

Gene fusions and their products (RNA and protein) have been traditionally recognized as unique features of cancer cells and are used as ideal biomarkers and drug targets for multiple cancer types. However, recent studies have demonstrated that chimeric RNAs generated by intergenic alternative splicing can also be found in normal cells and tissues. In this study, we aim to identify chimeric RNAs in different non-neoplastic cell lines and investigate the landscape and expression of these novel candidate chimeric RNAs. To do so, we used HEK-293T, HUVEC, and LO2 cell lines as models, performed paired-end RNA sequencing, and conducted analyses for chimeric RNA profiles. Several filtering criteria were applied, and the landscape of chimeric RNAs was characterized at multiple levels and from various angles. Further, we experimentally validated 17 chimeric RNAs from different classifications. Finally, we examined a number of validated chimeric RNAs in different cancer and non-cancer cells, including blood from healthy donors, and demonstrated their ubiquitous expression pattern.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica/métodos , Fusão Gênica , Neoplasias/genética , Linhagem Celular , Biologia Computacional/métodos , Células HEK293 , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Células Endoteliais da Veia Umbilical Humana , Humanos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos
6.
Nat Commun ; 12(1): 3408, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099702

RESUMO

Genome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and bone strength. In this work, we advance our understanding of the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics.


Assuntos
Densidade Óssea/genética , Osteoporose/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Animais , Diferenciação Celular/genética , Camundongos de Cruzamento Colaborativo , Conjuntos de Dados como Assunto , Feminino , Fêmur/fisiologia , Fluoresceínas/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Estudo de Associação Genômica Ampla , Glicosiltransferases/genética , Humanos , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Knockout , Osteoblastos , Osteogênese/genética , RNA-Seq , Análise de Célula Única
7.
PLoS One ; 15(10): e0240829, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33104722

RESUMO

Histone post-translational modifications (PTMs) create a powerful regulatory mechanism for maintaining chromosomal integrity in cells. Histone acetylation and methylation, the most widely studied histone PTMs, act in concert with chromatin-associated proteins to control access to genetic information during transcription. Alterations in cellular histone PTMs have been linked to disease states and have crucial biomarker and therapeutic potential. Traditional bottom-up mass spectrometry of histones requires large numbers of cells, typically one million or more. However, for some cell subtype-specific studies, it is difficult or impossible to obtain such large numbers of cells and quantification of rare histone PTMs is often unachievable. An established targeted LC-MS/MS method was used to quantify the abundance of histone PTMs from cell lines and primary human specimens. Sample preparation was modified by omitting nuclear isolation and reducing the rounds of histone derivatization to improve detection of histone peptides down to 1,000 cells. In the current study, we developed and validated a quantitative LC-MS/MS approach tailored for a targeted histone assay of 75 histone peptides with as few as 10,000 cells. Furthermore, we were able to detect and quantify 61 histone peptides from just 1,000 primary human stem cells. Detection of 37 histone peptides was possible from 1,000 acute myeloid leukemia patient cells. We anticipate that this revised method can be used in many applications where achieving large cell numbers is challenging, including rare human cell populations.


Assuntos
Histonas/genética , Histonas/metabolismo , Proteômica/métodos , Acetilação , Linhagem Celular , Cromatografia Líquida/métodos , Humanos , Metilação , Peptídeos/química , Processamento de Proteína Pós-Traducional/genética , Espectrometria de Massas em Tandem/métodos
8.
Biochim Biophys Acta Mol Basis Dis ; 1865(2): 403-412, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414897

RESUMO

BACKGROUND: Microvascular dysfunction is a major complication in hypertensive patients. We previously reported that CD4+CD25+ T regulatory cells (Treg) play an important preventive role in hypertension-induced vascular dysfunction. However, whether Treg cells therapy and autophagy inhibition could rescue Treg cells survival and microvascular function in established hypertension is an important question that remained unanswered. METHODS & RESULTS: Here we showed that Treg cells from mice model of established hypertension displayed an enhanced apoptotic rate, which was rescued with Treg cells transfer and autophagy inhibition. We also showed increased autophagy in mesenteric resistance artery (MRA) in mice with established hypertension. Importantly, the inhibition of autophagy or one single transfer of Treg cells into mice with established hypertension improved the microvascular function independently of high blood pressure. The protection involves the modulation of interleukin-10 (IL-10), inflammation, endoplasmic reticulum (ER) stress, oxidative stress, Akt, and eNOS. CONCLUSIONS: The present study suggests that Treg cells survival is regulated by autophagy. Also, Treg cells as a cellular therapy aimed at rescuing the microvascular function through an autophagy-dependent mechanism and independently of arterial blood pressure lowering effects. Because our mouse model of established hypertension mimics the clinical situation, our results have the potential for new therapeutic approaches that involve the manipulation of Treg cells and autophagy to overcome established hypertension-induced cardiovascular complications.


Assuntos
Hipertensão/imunologia , Hipertensão/fisiopatologia , Depleção Linfocítica , Microvasos/fisiopatologia , Linfócitos T Reguladores/imunologia , Animais , Pressão Arterial , Biomarcadores/metabolismo , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Modelos Biológicos , NADPH Oxidases/metabolismo , Estresse Oxidativo , Fosforilação , Sístole , Resistência Vascular
9.
J Hypertens ; 36(2): 377-386, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29611835

RESUMO

OBJECTIVES: Stromal interacting molecule-1 (STIM1) plays a role in coordinating calcium signaling in different cell types. The increase or deletion of STIM1 expression in cardiomyocyte causes cardiac complication. Moreover, the deletion of STIM1 in endothelial cell causes vascular endothelial dysfunction. However, the disruption of STIM1 in smooth muscle cells (SMC) has no effect on endothelial function but protects vascular function when mice are infused with angiotensin-II. Nevertheless, the role of SMC-STIM1 in acute and chronic myocardial infarction (MI) induced by acute ischemia-reperfusion injury and permanent coronary artery occlusion is unknown. METHODS AND RESULTS: Stim1 were generated and crossed into the SM22α-Cre backgrounds. SM22α-Cre causes deletion of STIM1 floxed genes in adult SMC (Stim1). Control and Stim1 mice were subjected to acute ischemia-reperfusion injury. Hearts were then harvested and incubated with triphenyltetrazolium chloride to determine the infarct size. In control mice which are subjected to ischemia-reperfusion, the heart developed a significant infarct associated with an increase in STIM1 expression. Interestingly, the infarct size was substantially reduced in Stim1 mice. The protection in Stim1 mice against ischemia-reperfusion injury involves the modulation of endoplasmic reticulum stress, apoptosis, oxidative stress, protein kinase B, and mitogen-activated protein (MAP) kinase (ERK1/2 and p38) signaling, and inflammation. Furthermore, in another model of chronic MI induced by permanent coronary artery occlusion, SMC-STIM1 disruption significantly reduced myocardial infarct size and improved cardiac function. CONCLUSION: Our results provide new evidence that SMC-STIM1 disruption is a novel mechanism that protects the heart from MI through reduction of endoplasmic reticulum stress, oxidative stress, MAP-Kinase, apoptosis, and inflammation.


Assuntos
Infarto do Miocárdio/etiologia , Infarto do Miocárdio/genética , Miócitos de Músculo Liso/metabolismo , Traumatismo por Reperfusão/complicações , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Animais , Apoptose , Vasos Coronários/cirurgia , Estresse do Retículo Endoplasmático , Ligadura , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/complicações , Miócitos Cardíacos , Estresse Oxidativo , Fatores de Proteção , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA