RESUMO
The effectiveness and potential immunosuppressive effects of anti-inflammatory glucocorticoids in the lungs of severe acute respiratory syndrome (SARS) patients are undefined. We treated porcine respiratory coronavirus (PRCV)-infected conventional pigs with the corticosteroid dexamethasone (DEX) as a model for SARS. Innate and Th1 cytokines in bronchoalveolar lavage (BAL) and serum were elevated in PRCV-infected pigs compared to controls, but were decreased after DEX treatment in the PRCV-infected, DEX-treated (PRCV/DEX) pigs. Although decreased in BAL, Th2 cytokine levels were higher in serum after DEX treatment. Levels of the proinflammatory cytokine interleukin-6 in BAL and serum were decreased in PRCV/DEX pigs early but increased later compared to those in phosphate-buffered saline-treated, PRCV-infected pigs, corresponding to a similar trend for lung lesions. PRCV infection increased T-cell frequencies in BAL, but DEX treatment of PRCV-infected pigs reduced frequencies of T cells; interestingly B and SWC3a(+) (monocytes/macrophages/granulocytes) cell frequencies were increased. DEX reduced numbers of PRCV-stimulated Th1 gamma interferon-secreting cells in spleen, tracheobroncheolar lymph nodes, and blood. Our findings suggest that future glucocorticoid treatment of SARS patients should be reconsidered in the context of potential local immunosuppression of immune responses in lung and systemic Th1 cytokine-biased suppression.
Assuntos
Corticosteroides/efeitos adversos , Citocinas/imunologia , Coronavirus Respiratório Porcino/imunologia , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/imunologia , Corticosteroides/uso terapêutico , Animais , Infecções por Coronavirus , Dexametasona/efeitos adversos , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Humanos , Imunidade Celular/efeitos dos fármacos , Terapia de Imunossupressão/efeitos adversos , SuínosRESUMO
Transmissible gastroenteritis virus (TGEV) isolates that have been adapted to passage in cell culture maintain their infectivity in vitro but may lose their pathogenicity in vivo. To better understand the genomic mechanisms for viral attenuation, we sequenced the complete genomes of two virulent TGEV strains and their attenuated counterparts: virulent TGEV Miller M6 and attenuated TGEV Miller M60 and virulent TGEV Purdue and attenuated TGEV Purdue P115, together with the ISU-1 strain of porcine respiratory coronavirus (PRCV-ISU-1), a naturally occurring TGEV deletion mutant with an altered respiratory tropism and reduced virulence. Pairwise comparison at both the nucleotide (nt) and amino acid (aa) levels between virulent and attenuated TGEV strains identified a common change in nt 1753 of the spike gene, resulting in a serine to alanine mutation at aa position 585 of the spike proteins of the attenuated TGEV strains. Alanine was also present in this protein in PRCV-ISU-1. Particularly noteworthy, the serine to alanine mutation resides in the region of the major antigenic site A/B (aa 506-706) that elicits neutralizing antibodies and within the domain mediating the cell surface receptor aminopeptidase N binding (aa 522-744). Comparison of the predicted polypeptide products of ORF3b showed significant deletions in the naturally attenuated PRCV-ISU-1 and TGEV Miller M60; these deletions occurred at a common break point, suggesting a related mechanism of recombination that may affect viral virulence or tropism. Sequence comparisons at both genomic and protein levels indicated that PRCV-ISU-1 had a closer relationship with TGEV Miller strains than Purdue strains. Phylogenetic analyses showed that virulence is an evolutionarily labile trait in TGEV and that TGEV strains as a group share a common ancestor with PRCV.