Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Viruses ; 11(5)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091764

RESUMO

Benzothiadiazole (BTH) is a functional analogue of the phytohormone salycilic acid (SA) involved in the plant immune response. NahG tomato plants are unable to accumulate SA, which makes them hypersusceptible to several pathogens. Treatments with BTH increase the resistance to bacterial, fungal, viroid, or viral infections. In this study, metabolic alterations in BTH-treated Money Maker and NahG tomato plants infected by citrus exocortis viroid (CEVd) were investigated by nuclear magnetic resonance spectroscopy. Using multivariate data analysis, we have identified defence metabolites induced after viroid infection and BTH-treatment. Glycosylated phenolic compounds include gentisic and ferulic acid accumulated in CEVd-infected tomato plants, as well as phenylalanine, tyrosine, aspartate, glutamate, and asparagine. Besides, an increase of γ-aminobutyric acid (GABA), glutamine, adenosine, and trigonelline, contributed to a clear discrimination between the metabolome of BTH-treated tomato leaves and their corresponding controls. Among them, GABA was the only metabolite significantly accumulated in both genotypes after the chemical treatment. In view of these results, the addition of GABA was performed on tomato plants infected by CEVd, and a reversion of the NahG hypersusceptibility to CEVd was observed, indicating that GABA could regulate the resistance to CEVd induced by BTH.


Assuntos
Metaboloma/efeitos dos fármacos , Doenças das Plantas/imunologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Tiadiazóis/farmacologia , Viroides/imunologia , Citrato (si)-Sintase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Oxigenases de Função Mista/metabolismo , Doenças das Plantas/terapia , Doenças das Plantas/virologia , Imunidade Vegetal/efeitos dos fármacos , RNA Viral , Viroides/patogenicidade
2.
J Antibiot (Tokyo) ; 68(7): 445-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25690357

RESUMO

Actinomycetes are a major source of bioactive secondary metabolites and are a focal point in the search for novel antimicrobial compounds that are needed to combat multidrug-resistant pathogens. Here, we report the discovery of several novel phenazine-type antibiotics produced by Kitasatospora sp. MBT66. These include the novel glycosylated endophenazines A-E (1-5), together with N-prenylated endophenazine F1 (6). Compounds 1 and 3 contain a 2'-O-methylation of the sugar moiety, which is rare in nature and reported for the first time in connection with phenazines. The structures of the new compounds were determined on the basis of their spectral data, including 1D and 2D NMR, HR-MS and the gene cluster responsible for the biosynthesis of phenazines was identified. All phenazine derivatives showed antimicrobial activity against the Gram-positive Bacillus subtilis, while compounds 1-3 and 5 also inhibited growth of the Gram-negative Escherichia coli.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Fenazinas/isolamento & purificação , Fenazinas/farmacologia , Streptomycetaceae/química , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Vias Biossintéticas/genética , Escherichia coli/efeitos dos fármacos , Estrutura Molecular , Família Multigênica , Fenazinas/química , Análise Espectral , Streptomycetaceae/genética , Streptomycetaceae/metabolismo
3.
Sci Rep ; 5: 10868, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26040782

RESUMO

Actinomycetes and filamentous fungi produce a wide range of bioactive compounds, with applications as antimicrobials, anticancer agents or agrochemicals. Their genomes contain a far larger number of gene clusters for natural products than originally anticipated, and novel approaches are required to exploit this potential reservoir of new drugs. Here, we show that co-cultivation of the filamentous model microbes Streptomyces coelicolor and Aspergillus niger has a major impact on their secondary metabolism. NMR-based metabolomics combined with multivariate data analysis revealed several compounds that correlated specifically to co-cultures, including the cyclic dipeptide cyclo(Phe-Phe) and 2-hydroxyphenylacetic acid, both of which were produced by A. niger in response to S. coelicolor. Furthermore, biotransformation studies with o-coumaric acid and caffeic acid resulted in the production of the novel compounds (E)-2-(3-hydroxyprop-1-en-1-yl)-phenol and (2E,4E)-3-(2-carboxy-1-hydroxyethyl)-2,4-hexadienedioxic acid, respectively. This highlights the utility of microbial co-cultivation combined with NMR-based metabolomics as an efficient pipeline for the discovery of novel natural products.


Assuntos
Aspergillus/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Biotransformação , Streptomyces/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA