Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(23): e2118836119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653572

RESUMO

Rapid identification of newly emerging or circulating viruses is an important first step toward managing the public health response to potential outbreaks. A portable virus capture device, coupled with label-free Raman spectroscopy, holds the promise of fast detection by rapidly obtaining the Raman signature of a virus followed by a machine learning (ML) approach applied to recognize the virus based on its Raman spectrum, which is used as a fingerprint. We present such an ML approach for analyzing Raman spectra of human and avian viruses. A convolutional neural network (CNN) classifier specifically designed for spectral data achieves very high accuracy for a variety of virus type or subtype identification tasks. In particular, it achieves 99% accuracy for classifying influenza virus type A versus type B, 96% accuracy for classifying four subtypes of influenza A, 95% accuracy for differentiating enveloped and nonenveloped viruses, and 99% accuracy for differentiating avian coronavirus (infectious bronchitis virus [IBV]) from other avian viruses. Furthermore, interpretation of neural net responses in the trained CNN model using a full-gradient algorithm highlights Raman spectral ranges that are most important to virus identification. By correlating ML-selected salient Raman ranges with the signature ranges of known biomolecules and chemical functional groups­for example, amide, amino acid, and carboxylic acid­we verify that our ML model effectively recognizes the Raman signatures of proteins, lipids, and other vital functional groups present in different viruses and uses a weighted combination of these signatures to identify viruses.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Vírus , Surtos de Doenças , Pandemias , Sorogrupo , Vírus/classificação
2.
J Virol ; 97(7): e0016123, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367301

RESUMO

Parvoviruses are among the smallest and superficially simplest animal viruses, infecting a broad range of hosts, including humans, and causing some deadly infections. In 1990, the first atomic structure of the canine parvovirus (CPV) capsid revealed a 26-nm-diameter T=1 particle made up of two or three versions of a single protein, and packaging about 5,100 nucleotides of single-stranded DNA. Our structural and functional understanding of parvovirus capsids and their ligands has increased as imaging and molecular techniques have advanced, and capsid structures for most groups within the Parvoviridae family have now been determined. Despite those advances, significant questions remain unanswered about the functioning of those viral capsids and their roles in release, transmission, or cellular infection. In addition, the interactions of capsids with host receptors, antibodies, or other biological components are also still incompletely understood. The parvovirus capsid's apparent simplicity likely conceals important functions carried out by small, transient, or asymmetric structures. Here, we highlight some remaining open questions that may need to be answered to provide a more thorough understanding of how these viruses carry out their various functions. The many different members of the family Parvoviridae share a capsid architecture, and while many functions are likely similar, others may differ in detail. Many of those parvoviruses have not been experimentally examined in detail (or at all in some cases), so we, therefore, focus this minireview on the widely studied protoparvoviruses, as well as the most thoroughly investigated examples of adeno-associated viruses.


Assuntos
Parvoviridae , Animais , Humanos , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , DNA Viral/metabolismo , Parvoviridae/genética , Parvoviridae/ultraestrutura , Infecções por Parvoviridae/metabolismo , Infecções por Parvoviridae/virologia , Dependovirus/genética , Dependovirus/metabolismo , Dependovirus/ultraestrutura
3.
J Virol ; 97(6): e0009023, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199627

RESUMO

Canine parvovirus (CPV) is a small nonenveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late 1970s due to a host range switch of a virus similar to the feline panleukopenia virus that infected another host. The virus that emerged in dogs had altered capsid receptor and antibody binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we used in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bound two distinct epitopes, and one largely overlapped the host receptor binding site. We also generated mutated antibody variants with altered binding structures. Viruses were passaged with wild-type (WT) or mutated antibodies, and their genomes were deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the transferrin receptor type 1 binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we used an in vitro model system and deep genome sequencing to reveal the mutations that arose in the virus genome during selection by each of two monoclonal antibodies or their mutated variants. High-resolution structures of each of the Fab:capsid complexes revealed their binding interactions. The wild-type antibodies or their mutated variants allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and they likely have parallels for many other viruses.


Assuntos
Anticorpos Antivirais , Sítios de Ligação de Anticorpos , Capsídeo , Parvovirus Canino , Animais , Cães , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Epitopos/genética , Epitopos/análise , Parvovirus Canino/genética , Parvovirus Canino/metabolismo , Mutação , Anticorpos Antivirais/genética , Anticorpos Antivirais/metabolismo , Sítios de Ligação de Anticorpos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos Virais/metabolismo , Seleção Genética
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074770

RESUMO

Canine parvovirus is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Overlap on the surface of parvovirus capsids between the antigenic epitope and the receptor binding site has contributed to cross-species transmission, giving rise to closely related variants. It has been shown that Mab 14 strongly binds and neutralizes canine but not feline parvovirus, suggesting this antigenic site also controls species-specific receptor binding. To visualize the conformational epitope at high resolution, we solved the cryogenic electron microscopy (cryo-EM) structure of the Fab-virus complex. We also created custom software, Icosahedral Subparticle Extraction and Correlated Classification, to solve a Fab-virus complex with only a few Fab bound per capsid and visualize local structures of the Fab-bound and -unbound antigenic sites extracted from the same complex map. Our results identified the antigenic epitope that had significant overlap with the receptor binding site, and the structures revealed that binding of Fab induced conformational changes to the virus. We were also able to assign the order and position of attached Fabs to allow assessment of complementarity between the Fabs bound to different positions. This approach therefore provides a method for using cryo-EM to investigate complementarity of antibody binding.


Assuntos
Anticorpos Antivirais/química , Sítios de Ligação , Capsídeo/metabolismo , Fragmentos Fab das Imunoglobulinas/química , Parvovirus Canino/fisiologia , Ligação Proteica/fisiologia , Animais , Anticorpos Antivirais/imunologia , Antígenos/metabolismo , Microscopia Crioeletrônica , Cães , Epitopos/genética , Epitopos/imunologia , Mutação , Domínios Proteicos
5.
J Virol ; 96(21): e0099022, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36255280

RESUMO

Ubiquitous and abundant in ecosystems and microbiomes, gokushoviruses constitute a Microviridae subfamily, distantly related to bacteriophages ΦX174, α3, and G4. A high-resolution cryo-EM structure of gokushovirus ΦEC6098 was determined, and the atomic model was built de novo. Although gokushoviruses lack external scaffolding and spike proteins, which extensively interact with the ΦX174 capsid protein, the core of the ΦEC6098 coat protein (VP1) displayed a similar structure. There are, however, key differences. At each ΦEC6098 icosahedral 3-fold axis, a long insertion loop formed mushroom-like protrusions, which have been noted in lower-resolution gokushovirus structures. Hydrophobic interfaces at the bottom of these protrusions may confer stability to the capsid shell. In ΦX174, the N-terminus of the capsid protein resides directly atop the 3-fold axes of symmetry; however, the ΦEC6098 N-terminus stretched across the inner surface of the capsid shell, reaching nearly to the 5-fold axis of the neighboring pentamer. Thus, this extended N-terminus interconnected pentamers on the inside of the capsid shell, presumably promoting capsid assembly, a function performed by the ΦX174 external scaffolding protein. There were also key differences between the ΦX174-like DNA-binding J proteins and its ΦEC6098 homologue VP8. As seen with the J proteins, C-terminal VP8 residues were bound into a pocket within the major capsid protein; however, its N-terminal residues were disordered, likely due to flexibility. We show that the combined location and interaction of VP8's C-terminus and a portion of VP1's N-terminus are reminiscent of those seen with the ΦX174 and α3 J proteins. IMPORTANCE There is a dramatic structural and morphogenetic divide within the Microviridae. The well-studied ΦX174-like viruses have prominent spikes at their icosahedral vertices, which are absent in gokushoviruses. Instead, gokushovirus major coat proteins form extensive mushroom-like protrusions at the 3-fold axes of symmetry. In addition, gokushoviruses lack an external scaffolding protein, the more critical of the two ΦX174 assembly proteins, but retain an internal scaffolding protein. The ΦEC6098 virion suggests that key external scaffolding functions are likely performed by coat protein domains unique to gokushoviruses. Thus, within one family, different assembly paths have been taken, demonstrating how a two-scaffolding protein system can evolve into a one-scaffolding protein system, or vice versa.


Assuntos
Capsídeo , Microviridae , Capsídeo/química , Microvirus , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Ecossistema , Microviridae/química , Microviridae/metabolismo , Bacteriófago phi X 174 , Montagem de Vírus
6.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215156

RESUMO

Mayaro virus (MAYV) is an emerging New World alphavirus (genus Alphavirus, family Togaviridae) that causes acute multiphasic febrile illness, skin rash, polyarthritis and occasional severe clinical phenotypes. The virus lifecycle alternates between invertebrate and vertebrate hosts. Here we characterize the replication features, cell entry, lifecycle and virus-related cell pathology of MAYV using vertebrate and invertebrate in vitro models. Electron-dense clathrin-coated pits in infected cells and reduced viral production in the presence of dynasore, ammonium chloride and bafilomycin indicate that viral entry occurs through pH-dependent endocytosis. Increase in FITC-dextran uptake (an indicator of macropinocytosis) in MAYV-infected cells, and dose-dependent infection inhibition by 5-(N-ethyl-N-isopropyl) amiloride (a macropinocytosis inhibitor), indicated that macropinocytosis is an additional entry mechanism of MAYV in vertebrate cells. Acutely infected vertebrate and invertebrate cells formed cytoplasmic or membrane-associated extracytoplasmic replication complexes. Mosquito cells showed modified hybrid cytoplasmic vesicles that supported virus replication, nucleocapsid production and maturation. Mature virus particles were released from cells by both exocytosis and budding from the cell membrane. MAYV replication was cytopathic and associated with induction of apoptosis by the intrinsic pathway, and later by the extrinsic pathway in infected vertebrate cells. Given that MAYV is expanding its geographical existence as a potential public health problem, this study lays the foundation for biological understanding that will be valuable for therapeutic and preventive interventions.


Assuntos
Alphavirus , Culicidae , Alphavirus/genética , Amilorida/farmacologia , Cloreto de Amônio , Animais , Biologia , Clatrina , Vertebrados
7.
Proc Natl Acad Sci U S A ; 116(41): 20462-20471, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548398

RESUMO

Canine parvovirus (CPV) is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Cross-species transmission of CPV occurs as a result of mutations on the viral capsid surface that alter the species-specific binding to the host receptor, transferrin receptor type-1 (TfR). The interaction between CPV and TfR has been extensively studied, and previous analyses have suggested that the CPV-TfR complex is asymmetric. To enhance the understanding of the underlying molecular mechanisms, we determined the CPV-TfR interaction using cryo-electron microscopy to solve the icosahedral (3.0-Å resolution) and asymmetric (5.0-Å resolution) complex structures. Structural analyses revealed conformational variations of the TfR molecules relative to the binding site, which translated into dynamic molecular interactions between CPV and TfR. The precise footprint of the receptor on the virus capsid was identified, along with the identity of the amino acid residues in the virus-receptor interface. Our "rock-and-roll" model provides an explanation for previous findings and gives insights into species jumping and the variation in host ranges associated with new pandemics in dogs.


Assuntos
Capsídeo/metabolismo , Parvovirus Canino/fisiologia , Receptores da Transferrina/metabolismo , Receptores Virais/metabolismo , Vírion/metabolismo , Animais , Capsídeo/química , Gatos , Microscopia Crioeletrônica , Cães , Conformação Proteica , Receptores da Transferrina/química , Receptores Virais/química , Especificidade da Espécie , Vírion/química
8.
PLoS Pathog ; 15(5): e1007760, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31071193

RESUMO

Enterovirus A71 (EV-A71) is a non-polio neurotropic enterovirus with pandemic potential. There are no antiviral agents approved to prevent or treat EV-A71 infections. We here report on the molecular mechanism by which a novel class of tryptophan dendrimers inhibits (at low nanomolar to high picomolar concentration) EV-A71 replication in vitro. A lead compound in the series (MADAL385) prevents binding and internalization of the virus but does not, unlike classical capsid binders, stabilize the particle. By means of resistance selection, reverse genetics and cryo-EM, we map the binding region of MADAL385 to the 5-fold vertex of the viral capsid and demonstrate that a single molecule binds to each vertex. By interacting with this region, MADAL385 prevents the interaction of the virus with its cellular receptors PSGL1 and heparan sulfate, thereby blocking the attachment of EV-A71 to the host cells.


Assuntos
Antivirais/farmacologia , Capsídeo/metabolismo , Infecções por Enterovirus/metabolismo , Enterovirus/efeitos dos fármacos , Heparitina Sulfato/metabolismo , Glicoproteínas de Membrana/metabolismo , Triptofano/farmacologia , Antivirais/química , Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Dendrímeros/química , Dendrímeros/farmacologia , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Células HeLa , Heparitina Sulfato/antagonistas & inibidores , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Conformação Proteica , Triptofano/química , Replicação Viral/efeitos dos fármacos
9.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626673

RESUMO

Parvovirus-derived endogenous viral elements (EVEs) have been found in the genomes of many different animal species, resulting from integration events that may have occurred from more than 50 million years ago to much more recently. Here, we further investigate the properties of autonomous parvovirus EVEs and describe their relationships to contemporary viruses. While we did not find any intact capsid protein open reading frames in the integrated viral sequences, we examined three EVEs that were repaired to form full-length sequences with relatively few changes. These sequences were found in the genomes of Rattus norvegicus (brown rat), Mus spretus (Algerian mouse), and Apodemus sylvaticus (wood mouse). The R. norvegicus sequence was not present in the genomes of the closely related species R. rattus, R. tanezumi, R. exulans, and R. everetti, indicating that it was less than 2 million years old, and the M. spretus and A. sylvaticus sequences were not found in the published genomes of other mouse species, also indicating relatively recent insertions. The M. spretus VP2 sequence assembled into capsids, which had high thermal stability, bound the sialic acid N-acetylneuraminic acid, and entered murine L cells. The 3.89-Å structure of the M. spretus virus-like particles (VLPs), determined using cryo-electron microscopy, showed similarities to rodent and porcine parvovirus capsids. The repaired VP2 sequences from R. norvegicus and A. sylvaticus did not assemble as first prepared, but chimeras combining capsid surface loops from R. norvegicus with canine parvovirus assembled, allowing some of that capsid's structures and functions to be examined.IMPORTANCE Parvovirus endogenous viral elements (EVEs) that have been incorporated into the genomes of different animals represent remnants of the DNA sequences of ancient viruses that infected the ancestors of those animals millions of years ago, but we know little about their properties or how they differ from currently circulating parvoviruses. By expressing the capsid proteins of different parvovirus EVEs that were found integrated into the genomes of three different rodents, we can examine their structures and functions. A VP2 (major capsid protein) EVE sequence from a mouse genome assembled into capsids that had a similar structure and biophysical properties to extant parvoviruses and also bound sialic acids and entered rodent cells. Chimeras formed from combinations of canine parvovirus and portions of the parvovirus sequences from the brown rat genome allowed us to examine the structures and functions of the surface loops of that EVE capsid.


Assuntos
Proteínas do Capsídeo/genética , Genoma/genética , Infecções por Parvoviridae/genética , Parvovirus/genética , Roedores/genética , Roedores/virologia , Animais , Capsídeo , Gatos , Linhagem Celular , Cães , Células HEK293 , Humanos , Camundongos , Infecções por Parvoviridae/virologia , Ratos , Células Sf9 , Suínos
10.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619551

RESUMO

Canine parvovirus (CPV) is a highly successful pathogen that has sustained pandemic circulation in dogs for more than 40 years. Here, integrating full-genome and deep-sequencing analyses, structural information, and in vitro experimentation, we describe the macro- and microscale features that accompany CPV's evolutionary success. Despite 40 years of viral evolution, all CPV variants are more than ∼99% identical in nucleotide sequence, with only a limited number (<40) of substitutions becoming fixed or widespread during this time. Notably, most substitutions in the major capsid protein (VP2) gene are nonsynonymous, altering amino acid residues that fall within, or adjacent to, the overlapping receptor footprint or antigenic regions, suggesting that natural selection has channeled much of CPV evolution. Among the limited number of variable sites, CPV genomes exhibit complex patterns of variation that include parallel evolution, reversion, and recombination, compromising phylogenetic inference. At the intrahost level, deep sequencing of viral DNA in original clinical samples from dogs and other host species sampled between 1978 and 2018 revealed few subconsensus single nucleotide variants (SNVs) above ∼0.5%, and experimental passages demonstrate that substantial preexisting genetic variation is not necessarily required for rapid host receptor-driven adaptation. Together, these findings suggest that although CPV is capable of rapid host adaptation, a relatively low mutation rate, pleiotropy, and/or a lack of selective challenges since its initial emergence have inhibited the long-term accumulation of genetic diversity. Hence, continuously high levels of inter- and intrahost diversity are not necessarily required for virus host adaptation.IMPORTANCE Rapid mutation rates and correspondingly high levels of intra- and interhost diversity are often cited as key features of viruses with the capacity for emergence and sustained transmission in a new host species. However, most of this information comes from studies of RNA viruses, with relatively little known about evolutionary processes in viruses with single-stranded DNA (ssDNA) genomes. Here, we provide a unique model of virus evolution, integrating both long-term global-scale and short-term intrahost evolutionary processes of an ssDNA virus that emerged to cause a pandemic in a new host animal. Our analysis reveals that successful host jumping and sustained transmission does not necessarily depend on a high level of intrahost diversity nor result in the continued accumulation of high levels of long-term evolution change. These findings indicate that all aspects of the biology and ecology of a virus are relevant when considering their adaptability.


Assuntos
Proteínas do Capsídeo/genética , DNA Viral/genética , Doenças do Cão/epidemiologia , Genoma Viral , Infecções por Parvoviridae/veterinária , Parvovirus Canino/genética , Proteínas não Estruturais Virais/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Proteínas do Capsídeo/classificação , Proteínas do Capsídeo/metabolismo , DNA Viral/metabolismo , Doenças do Cão/transmissão , Doenças do Cão/virologia , Cães , Raposas/virologia , Especificidade de Hospedeiro/genética , Modelos Moleculares , Mutação , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/transmissão , Infecções por Parvoviridae/virologia , Parvovirus Canino/classificação , Parvovirus Canino/patogenicidade , Filogenia , Conformação Proteica , Cães Guaxinins/virologia , Guaxinins/virologia , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/metabolismo , Sequenciamento Completo do Genoma
11.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29695427

RESUMO

Antibody and receptor binding are key virus-host interactions that control host range and determine the success of infection. Canine and feline parvovirus capsids bind the transferrin receptor type 1 (TfR) to enter host cells, and specific structural interactions appear necessary to prepare the stable capsids for infection. Here, we define the details of binding, competition, and occupancy of wild-type and mutant parvovirus capsids with purified receptors and antibodies. TfR-capsid binding interactions depended on the TfR species and varied widely, with no direct relationship between binding affinity and infection. Capsids bound feline, raccoon, and black-backed jackal TfRs at high affinity but barely bound canine TfRs, which mediated infection efficiently. TfRs from different species also occupied capsids to different levels, with an estimated 1 to 2 feline TfRs but 12 black-backed jackal TfRs binding each capsid. Multiple alanine substitutions within loop 1 on the capsid surface reduced TfR binding but substitutions within loop 3 did not, suggesting that loop 1 directly engaged the TfR and loop 3 sterically affected that interaction. Binding and competition between different TfRs and/or antibodies showed complex relationships. Both antibodies 14 and E competed capsids off TfRs, but antibody E could also compete capsids off itself and antibody 14, likely by inducing capsid structural changes. In some cases, the initial TfR or antibody binding event affected subsequent TfR binding, suggesting that capsid structure changes occur after TfR or antibody binding and may impact infection. This shows that precise, host-specific TfR-capsid interactions, beyond simple attachment, are important for successful infection.IMPORTANCE Host receptor binding is a key step during viral infection and may control both infection and host range. In addition to binding, some viruses require specific interactions with host receptors in order to infect, and anti-capsid antibodies can potentially disrupt these interactions, leading to neutralization. Here, we examine the interactions between parvovirus capsids, the receptors from different hosts, and anti-capsid antibodies. We show that interactions between parvovirus capsids and host-specific TfRs vary in both affinity and in the numbers of receptors bound, with complex effects on infection. In addition, antibodies binding to two sites on the capsids had different effects on TfR-capsid binding. These experiments confirm that receptor and antibody binding to parvovirus capsids are complex processes, and the infection outcome is not determined simply by the affinity of attachment.


Assuntos
Anticorpos Antivirais/metabolismo , Capsídeo/metabolismo , Mutação , Parvovirus/patogenicidade , Receptores da Transferrina/metabolismo , Animais , Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Gatos , Linhagem Celular , Cães , Especificidade de Hospedeiro , Humanos , Chacais , Modelos Moleculares , Parvovirus/imunologia , Guaxinins , Receptores da Transferrina/química
12.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852845

RESUMO

The picornavirus-like deformed wing virus (DWV) has been directly linked to colony collapse; however, little is known about the mechanisms of host attachment or entry for DWV or its molecular and structural details. Here we report the three-dimensional (3-D) structures of DWV capsids isolated from infected honey bees, including the immature procapsid, the genome-filled virion, the putative entry intermediate (A-particle), and the empty capsid that remains after genome release. The capsids are decorated by large spikes around the 5-fold vertices. The 5-fold spikes had an open flower-like conformation for the procapsid and genome-filled capsids, whereas the putative A-particle and empty capsids that had released the genome had a closed tube-like spike conformation. Between the two conformations, the spikes undergo a significant hinge-like movement that we predicted using a Robetta model of the structure comprising the spike. We conclude that the spike structures likely serve a function during host entry, changing conformation to release the genome, and that the genome may escape from a 5-fold vertex to initiate infection. Finally, the structures illustrate that, similarly to picornaviruses, DWV forms alternate particle conformations implicated in assembly, host attachment, and RNA release. IMPORTANCE: Honey bees are critical for global agriculture, but dramatic losses of entire hives have been reported in numerous countries since 2006. Deformed wing virus (DWV) and infestation with the ectoparasitic mite Varroa destructor have been linked to colony collapse disorder. DWV was purified from infected adult worker bees to pursue biochemical and structural studies that allowed the first glimpse into the conformational changes that may be required during transmission and genome release for DWV.


Assuntos
Abelhas/virologia , Vírus de Insetos/fisiologia , Picornaviridae/fisiologia , Sequência de Aminoácidos , Animais , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Vírus de Insetos/ultraestrutura , Modelos Moleculares , Picornaviridae/ultraestrutura , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/ultraestrutura
13.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807242

RESUMO

Since the first description of adenoviruses in bats in 2006, a number of micro- and megabat species in Europe, Africa, and Asia have been shown to carry a wide diversity of adenoviruses. Here, we report on the evolutionary, biological, and structural characterization of a novel bat adenovirus (BtAdV) recovered from a Rafinesque's big-eared bat (Corynorhinus rafinesquii) in Kentucky, USA, which is the first adenovirus isolated from North American bats. This virus (BtAdV 250-A) exhibits a close phylogenetic relationship with Canine mastadenovirus A (CAdV A), as previously observed with other BtAdVs. To further investigate the relationships between BtAdVs and CAdVs, we conducted mass spectrometric analysis and single-particle cryo-electron microscopy reconstructions of the BtAdV 250-A capsid and also analyzed the in vitro host ranges of both viruses. Our results demonstrate that BtAdV 250-A represents a new mastadenovirus species that, in contrast to CAdV, has a unique capsid morphology that contains more prominent extensions of protein IX and can replicate efficiently in a phylogenetically diverse range of species. These findings, in addition to the recognition that both the genetic diversity of BtAdVs and the number of different bat species from disparate geographic regions infected with BtAdVs appears to be extensive, tentatively suggest that bats may have served as a potential reservoir for the cross-species transfer of adenoviruses to other hosts, as theorized for CAdV. IMPORTANCE: Although many adenoviruses are host specific and likely codiverged with their hosts over millions of years, other adenoviruses appear to have emerged through successful cross-species transmission events on more recent time scales. The wide geographic distribution and genetic diversity of adenoviruses in bats and their close phylogenetic relationship to Canine mastadenovirus A (CAdV A) has raised important questions about how CAdV A, and possibly other mammalian adenoviruses, may have emerged. Although most adenoviruses tend to cause limited disease in their natural hosts, CAdV A is unusual in that it may cause high morbidity and sometimes fatal infections in immunocompetent hosts and is thus an important pathogen of carnivores. Here, we performed a comparative evolutionary and structural study of representative bat and canine adenoviruses to better understand the relationship between these two viral groups.


Assuntos
Infecções por Adenoviridae/transmissão , Infecções por Adenoviridae/virologia , Evolução Biológica , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Mastadenovirus/fisiologia , Mastadenovirus/ultraestrutura , Animais , Quirópteros , Cães , Ordem dos Genes , Genoma Viral , Especificidade de Hospedeiro , Espectrometria de Massas , Mastadenovirus/classificação , Fases de Leitura Aberta , Filogenia , RNA Viral , Homologia de Sequência , Vírion
14.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27847360

RESUMO

Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE: Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Infecções por Parvoviridae/virologia , Parvovirus/fisiologia , Conformação Proteica , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Endopeptidases/metabolismo , Interações Hospedeiro-Patógeno , Modelos Moleculares , Mutação , Transporte Proteico , Proteólise , Receptores Virais/metabolismo , Relação Estrutura-Atividade , Ligação Viral
15.
PLoS Pathog ; 12(12): e1006076, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027325

RESUMO

White-nose syndrome is one of the most lethal wildlife diseases, killing over 5 million North American bats since it was first reported in 2006. The causal agent of the disease is a psychrophilic filamentous fungus, Pseudogymnoascus destructans. The fungus is widely distributed in North America and Europe and has recently been found in some parts of Asia, but interestingly, no mass mortality is observed in European or Asian bats. Here we report a novel double-stranded RNA virus found in North American isolates of the fungus and show that the virus can be used as a tool to study the epidemiology of White-nose syndrome. The virus, termed Pseudogymnoascus destructans partitivirus-pa, contains 2 genomic segments, dsRNA 1 and dsRNA 2 of 1.76 kbp and 1.59 kbp respectively, each possessing a single open reading frame, and forms isometric particles approximately 30 nm in diameter, characteristic of the genus Gammapartitivirus in the family Partitiviridae. Phylogenetic analysis revealed that the virus is closely related to Penicillium stoloniferum virus S. We were able to cure P. destructans of the virus by treating fungal cultures with polyethylene glycol. Examination of 62 isolates of P. destructans including 35 from United States, 10 from Canada and 17 from Europe showed virus infection only in North American isolates of the fungus. Bayesian phylogenetic analysis using nucleotide sequences of the viral coat protein geographically clustered North American isolates indicating fungal spread followed by local adaptation of P. destructans in different regions of the United States and Canada. This is the first demonstration that a mycovirus potentially can be used to study fungal disease epidemiology.


Assuntos
Quirópteros/virologia , Micovírus/genética , Micoses/veterinária , Vírus de RNA/genética , Animais , Teorema de Bayes , Northern Blotting , Filogenia , Reação em Cadeia da Polimerase , Síndrome
16.
J Virol ; 90(2): 753-67, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26512077

RESUMO

UNLABELLED: Sylvatic carnivores, such as raccoons, have recently been recognized as important hosts in the evolution of canine parvovirus (CPV), a pandemic pathogen of domestic dogs. Although viruses from raccoons do not efficiently bind the dog transferrin receptor (TfR) or infect dog cells, a single mutation changing an aspartic acid to a glycine at capsid (VP2) position 300 in the prototype raccoon CPV allows dog cell infection. Because VP2 position 300 exhibits extensive amino acid variation among the carnivore parvoviruses, we further investigated its role in determining host range by analyzing its diversity and evolution in nature and by creating a comprehensive set of VP2 position 300 mutants in infectious clones. Notably, some position 300 residues rendered CPV noninfectious for dog, but not cat or fox, cells. Changes of adjacent residues (residues 299 and 301) were also observed often after cell culture passage in different hosts, and some of the mutations mimicked changes seen in viruses recovered from natural infections of alternative hosts, suggesting that compensatory mutations were selected to accommodate the new residue at position 300. Analysis of the TfRs of carnivore hosts used in the experimental evolution studies demonstrated that their glycosylation patterns varied, including a glycan present only on the domestic dog TfR that dictates susceptibility to parvoviruses. Overall, there were significant differences in the abilities of viruses with alternative position 300 residues to bind TfRs and infect different carnivore hosts, demonstrating that the process of infection is highly host dependent and that VP2 position 300 is a key determinant of host range. IMPORTANCE: Although the emergence and pandemic spread of canine parvovirus (CPV) are well documented, the carnivore hosts and evolutionary pathways involved in its emergence remain enigmatic. We recently demonstrated that a region in the capsid structure of CPV, centered around VP2 position 300, varies after transfer to alternative carnivore hosts and may allow infection of previously nonsusceptible hosts in vitro. Here we show that VP2 position 300 is the most variable residue in the parvovirus capsid in nature, suggesting that it is a critical determinant in the cross-species transfer of viruses between different carnivores due to its interactions with the transferrin receptor to mediate infection. To this end, we demonstrated that there are substantial differences in receptor binding and infectivity of various VP2 position 300 mutants for different carnivore species and that single mutations in this region can influence whether a host is susceptible or refractory to virus infection.


Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Especificidade de Hospedeiro , Mutação de Sentido Incorreto , Parvovirus Canino/fisiologia , Animais , Gatos , Linhagem Celular , Cães , Raposas , Glicosilação , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polissacarídeos/análise , Receptores da Transferrina/química , Receptores da Transferrina/metabolismo , Inoculações Seriadas
17.
J Virol ; 90(21): 9733-9742, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27535057

RESUMO

Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM. IMPORTANCE: Using cryo-electron microscopy and new direct electron detector technology, we have solved the 4 Å resolution structure of a Fab molecule bound to a picornavirus capsid. The Fab induced conformational changes in regions of the virus capsid that control receptor binding. The antibody footprint is markedly different from the previous one identified by using a 12 Å structure. This work emphasizes the need for a high-resolution structure to guide mutational analysis and cautions against relying on older low-resolution structures even though they were interpreted with the best methodology available at the time.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Parvovirus Canino/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Capsídeo/imunologia , Proteínas do Capsídeo/imunologia , Cães , Testes de Neutralização/métodos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia
18.
PLoS Pathog ; 11(10): e1005184, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26430888

RESUMO

NF449, a sulfated compound derived from the antiparasitic drug suramin, was previously reported to inhibit infection by enterovirus A71 (EV-A71). In the current work, we found that NF449 inhibits virus attachment to target cells, and specifically blocks virus interaction with two identified receptors--the P-selectin ligand, PSGL-1, and heparan sulfate glycosaminoglycan--with no effect on virus binding to a third receptor, the scavenger receptor SCARB2. We also examined a number of commercially available suramin analogues, and newly synthesized derivatives of NF449; among these, NF110 and NM16, like NF449, inhibited virus attachment at submicromolar concentrations. PSGL-1 and heparan sulfate, but not SCARB2, are both sulfated molecules, and their interaction with EV-A71 is thought to involve positively charged capsid residues, including a conserved lysine at VP1-244, near the icosahedral 5-fold vertex. We found that mutation of VP1-244 resulted in resistance to NF449, suggesting that this residue is involved in NF449 interaction with the virus capsid. Consistent with this idea, NF449 and NF110 prevented virus interaction with monoclonal antibody MA28-7, which specifically recognizes an epitope overlapping VP1-244 at the 5-fold vertex. Based on these observations we propose that NF449 and related compounds compete with sulfated receptor molecules for a binding site at the 5-fold vertex of the EV-A71 capsid.


Assuntos
Antivirais/farmacologia , Benzenossulfonatos/farmacologia , Infecções por Enterovirus/virologia , Heparitina Sulfato/metabolismo , Glicoproteínas de Membrana/metabolismo , Ligação Viral/efeitos dos fármacos , Sítios de Ligação , Capsídeo/química , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/metabolismo , Células HeLa , Humanos , Células Jurkat , Modelos Moleculares , Dados de Sequência Molecular , Suramina/análogos & derivados
19.
PLoS Pathog ; 11(5): e1004838, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25941809

RESUMO

Understanding how a pathogen colonizes and adapts to a new host environment is a primary aim in studying emerging infectious diseases. Adaptive mutations arise among the thousands of variants generated during RNA virus infection, and identifying these variants will shed light onto how changes in tropism and species jumps can occur. Here, we adapted Coxsackie virus B3 to a highly permissive and less permissive environment. Using deep sequencing and bioinformatics, we identified a multi-step adaptive process to adaptation involving residues in the receptor footprints that correlated with receptor availability and with increase in virus fitness in an environment-specific manner. We show that adaptation occurs by selection of a dominant mutation followed by group selection of minority variants that together, confer the fitness increase observed in the population, rather than selection of a single dominant genotype.


Assuntos
Adaptação Biológica/genética , Enterovirus Humano B/genética , Replicação Viral/genética , Adaptação Biológica/imunologia , Linhagem Celular , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação/genética , Fenótipo
20.
J Virol ; 89(3): 1909-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410876

RESUMO

Canine parvovirus type 2 (CPV-2) emerged in 1978 and spread worldwide within 2 years. Subsequently, CPV-2 was completely replaced by the variant CPV-2a, which is characterized by four specific capsid (VP2) mutations. The X-ray crystal structure of the CPV-2a capsid shows that each mutation confers small local changes. The loss of a hydrogen bond and introduction of a glycine residue likely introduce flexibility to sites that control interactions with the host receptor, antibodies, and sialic acids.


Assuntos
Doenças do Cão/virologia , Especificidade de Hospedeiro , Infecções por Parvoviridae/veterinária , Parvovirus Canino/fisiologia , Animais , Proteínas do Capsídeo/química , Cristalografia por Raios X , Doenças do Cão/epidemiologia , Cães , Modelos Moleculares , Proteínas Mutantes/química , Pandemias , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/virologia , Parvovirus Canino/química , Parvovirus Canino/isolamento & purificação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA