Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2315354120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194459

RESUMO

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.


Assuntos
Anticorpos Monoclonais , Imunoglobulina A Secretora , Animais , Camundongos , Humanos , Imunoglobulina G , Imunoglobulina A , Administração Intranasal , Camundongos Transgênicos
2.
Viruses ; 16(7)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39066248

RESUMO

Rotavirus is infamous for being extremely contagious and for causing diarrhea and vomiting in infants. However, the symptomology is far more complex than what could be expected from a pathogen restricted to the boundaries of the small intestines. Other rotavirus sickness symptoms like fever, fatigue, sleepiness, stress, and loss of appetite have been clinically established for decades but remain poorly studied. A growing body of evidence in recent years has strengthened the idea that the evolutionarily preserved defensive responses that cause rotavirus sickness symptoms are more than just passive consequences of illness and rather likely to be coordinated events from the central nervous system (CNS), with the aim of maximizing the survival of the individual as well as the collective group. In this review, we discuss both established and plausible mechanisms of different rotavirus sickness symptoms as a series of CNS responses coordinated from the brain. We also consider the protective and the harmful nature of these events and highlight the need for further and deeper studies on rotavirus etiology.


Assuntos
Encéfalo , Infecções por Rotavirus , Rotavirus , Humanos , Infecções por Rotavirus/virologia , Encéfalo/virologia , Rotavirus/fisiologia , Animais , Diarreia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA