Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410645, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935405

RESUMO

Photoacoustic imaging (PAI) is an emerging modality in biomedical imaging with superior imaging depth and specificity. However, PAI still has significant limitations, such as the background noise from endogenous chromophores. To overcome these limitations, we developed a covalent activity-based PAI probe, NOx-JS013, targeting NCEH1. NCEH1, a highly expressed and activated serine hydrolase in aggressive cancers, has the potential to be employed for the diagnosis of cancers. We show that NOx-JS013 labels active NCEH1 in live cells with high selectivity relative to other serine hydrolases. NOx-JS013 also presents its efficacy as a hypoxia-responsive imaging probe in live cells. Finally, NOx-JS013 successfully visualizes aggressive prostate cancer tumors in mouse models of PC3, while negligibly detected in tumors of non-aggressive LNCaP mouse models. These findings show that NOx-JS013 has the potential to be used to develop precision PAI reagents for detecting metastatic progression in various cancers.

2.
Nat Chem Biol ; 16(2): 150-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768034

RESUMO

Covalent probes serve as valuable tools for global investigation of protein function and ligand binding capacity. Despite efforts to expand coverage of residues available for chemical proteomics (e.g., cysteine and lysine), a large fraction of the proteome remains inaccessible with current activity-based probes. Here, we introduce sulfur-triazole exchange (SuTEx) chemistry as a tunable platform for developing covalent probes with broad applications for chemical proteomics. We show modifications to the triazole leaving group can furnish sulfonyl probes with ~5-fold enhanced chemoselectivity for tyrosines over other nucleophilic amino acids to investigate more than 10,000 tyrosine sites in lysates and live cells. We discover that tyrosines with enhanced nucleophilicity are enriched in enzymatic, protein-protein interaction and nucleotide recognition domains. We apply SuTEx as a chemical phosphoproteomics strategy to monitor activation of phosphotyrosine sites. Collectively, we describe SuTEx as a biocompatible chemistry for chemical biology investigations of the human proteome.


Assuntos
Sondas Moleculares/química , Proteômica/métodos , Enxofre/química , Triazóis/química , Tirosina/análise , Tirosina/química , Células A549 , Sítios de Ligação , Flúor/química , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Células HEK293 , Humanos , Sondas Moleculares/síntese química , Fosforilação , Fosfotirosina/química , Fosfotirosina/metabolismo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Ácidos Sulfínicos/química , Tirosina/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(6): 1958-1967, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30670663

RESUMO

Interactions between glycans and glycan binding proteins are essential for numerous processes in all kingdoms of life. Glycan microarrays are an excellent tool to examine protein-glycan interactions. Here, we present a microbe-focused glycan microarray platform based on oligosaccharides obtained by chemical synthesis. Glycans were generated by combining different carbohydrate synthesis approaches including automated glycan assembly, solution-phase synthesis, and chemoenzymatic methods. The current library of more than 300 glycans is as diverse as the mammalian glycan array from the Consortium for Functional Glycomics and, due to its microbial focus, highly complementary. This glycan platform is essential for the characterization of various classes of glycan binding proteins. Applications of this glycan array platform are highlighted by the characterization of innate immune receptors and bacterial virulence factors as well as the analysis of human humoral immunity to pathogenic glycans.


Assuntos
Proteínas de Transporte/química , Análise em Microsséries/métodos , Polissacarídeos/química , Polissacarídeos/imunologia , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Células CHO , Cricetulus , Glicômica , Humanos , Sistema Imunitário , Lectinas , Oligossacarídeos , Polissacarídeos/classificação , Ligação Proteica , Proteínas Recombinantes , Especificidade da Espécie
4.
Chembiochem ; 22(12): 2134-2139, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33861519

RESUMO

Sulfonyl-triazoles have emerged as a new reactive group for covalent modification of tyrosine sites on proteins through sulfur-triazole exchange (SuTEx) chemistry. The extent to which this sulfur electrophile can be tuned for developing ligands with cellular activity remains largely underexplored. Here, we performed fragment-based ligand discovery in live cells to identify SuTEx compounds capable of liganding tyrosine sites on diverse protein targets. We verified our quantitative chemical proteomic findings by demonstrating concentration-dependent activity of SuTEx ligands, but not inactive counterparts, against recombinant protein targets directly in live cells. Our structure-activity relationship studies identified the SuTEx ligand HHS-0701 as a cell-active inhibitor capable of blocking prostaglandin reductase 2 (PTGR2) biochemical activity.


Assuntos
15-Oxoprostaglandina 13-Redutase/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Enxofre/farmacologia , Triazóis/farmacologia , 15-Oxoprostaglandina 13-Redutase/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Ligantes , Estrutura Molecular , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Enxofre/química , Compostos de Enxofre , Triazóis/química
5.
Proc Natl Acad Sci U S A ; 114(17): E3385-E3389, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396442

RESUMO

Reliable and rapid access to defined biopolymers by automated DNA and peptide synthesis has fundamentally altered biological research and medical practice. Similarly, the procurement of defined glycans is key to establishing structure-activity relationships and thereby progress in the glycosciences. Here, we describe the rapid assembly of oligosaccharides using the commercially available Glyconeer 2.1 automated glycan synthesizer, monosaccharide building blocks, and a linker-functionalized polystyrene solid support. Purification and quality-control protocols for the oligosaccharide products have been standardized. Synthetic glycans prepared in this way are useful reagents as the basis for glycan arrays, diagnostics, and carbohydrate-based vaccines.

6.
J Org Chem ; 81(14): 5866-77, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27267257

RESUMO

Lactotetraosyl (Lc4) and neo-lactotetraosyl (nLc4) are backbones that are common to many glycans. Using automated glycan assembly, these common core structures were constructed and elaborated to access synthetically challenging glycans of biological relevance. The incorporation of α-fucoses is demonstrated for H-type I and II; α(1,3)-galactose epitopes were prepared, and the pentasaccharide HNK-1 required incorporation of a 3-O-sulfate. In addition to preparing the target structures, essential insights were gained regarding the relationships of glycosylating agents and nucleophiles as well as the linker stability.


Assuntos
Antígenos de Grupos Sanguíneos/química , Glicosilação , Oligossacarídeos/química , Polissacarídeos/química , Química Orgânica , Cromatografia Líquida de Alta Pressão , Epitopos/química , Fucose/química , Humanos , Tioglicosídeos/química
7.
Beilstein J Org Chem ; 12: 1440-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559395

RESUMO

Vaccines against S. pneumoniae, one of the most prevalent bacterial infections causing severe disease, rely on isolated capsular polysaccharide (CPS) that are conjugated to proteins. Such isolates contain a heterogeneous oligosaccharide mixture of different chain lengths and frame shifts. Access to defined synthetic S. pneumoniae CPS structures is desirable. Known syntheses of S. pneumoniae serotype 3 CPS rely on a time-consuming and low-yielding late-stage oxidation step, or use disaccharide building blocks which limits variability. Herein, we report the first iterative automated glycan assembly (AGA) of a conjugation-ready S. pneumoniae serotype 3 CPS trisaccharide. This oligosaccharide was assembled using a novel glucuronic acid building block to circumvent the need for a late-stage oxidation. The introduction of a washing step with the activator prior to each glycosylation cycle greatly increased the yields by neutralizing any residual base from deprotection steps in the synthetic cycle. This process improvement is applicable to AGA of many other oligosaccharides.

8.
Beilstein J Org Chem ; 11: 617-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26124863

RESUMO

A sialic acid glycosyl phosphate building block was designed and synthesized. This building block was used to prepare α-sialylated oligosaccharides by automated solid-phase synthesis selectively.

9.
Chemistry ; 19(12): 3995-4002, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23447496

RESUMO

The first total synthesis of the O-antigen pentasaccharide repeating unit from Gram-negative bacteria Escherichia coli O111 was achieved starting from four monosaccharide building blocks. Key to the synthetic approach was a bis-glycosylation reaction to combine trisaccharide 10 and colitose 5. The colitose building block (5) was obtained de novo from non-carbohydrate precursors. The pentasaccharide was equipped at the reducing end with an amino spacer to provide a handle for subsequent conjugation to a carrier protein in anticipation of immunological studies.


Assuntos
Escherichia coli/química , Antígenos O/química , Configuração de Carboidratos , Sequência de Carboidratos , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Antígenos O/biossíntese
10.
Proc Natl Acad Sci U S A ; 107(18): 8129-34, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20406903

RESUMO

Using a high-throughput chemical screen, we identified two small molecules that enhance the survival of human embryonic stem cells (hESCs). By characterizing their mechanisms of action, we discovered an essential role of E-cadherin signaling for ESC survival. Specifically, we showed that the primary cause of hESC death following enzymatic dissociation comes from an irreparable disruption of E-cadherin signaling, which then leads to a fatal perturbation of integrin signaling. Furthermore, we found that stability of E-cadherin and the resulting survival of ESCs were controlled by specific growth factor signaling. Finally, we generated mESC-like hESCs by culturing them in mESC conditions. And these converted hESCs rely more on E-cadherin signaling and significantly less on integrin signaling. Our data suggest that differential usage of cell adhesion systems by ESCs to maintain self-renewal may explain their profound differences in terms of morphology, growth factor requirement, and sensitivity to enzymatic cell dissociation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Animais , Caderinas/metabolismo , Adesão Celular , Comunicação Celular , Forma Celular , Sobrevivência Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Matriz Extracelular/metabolismo , Humanos , Integrinas/metabolismo , Camundongos , Células-Tronco Pluripotentes/citologia , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
11.
Nat Methods ; 6(11): 805-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19838168

RESUMO

The slow kinetics and low efficiency of reprogramming methods to generate human induced pluripotent stem cells (iPSCs) impose major limitations on their utility in biomedical applications. Here we describe a chemical approach that dramatically improves (200-fold) the efficiency of iPSC generation from human fibroblasts, within seven days of treatment. This will provide a basis for developing safer, more efficient, nonviral methods for reprogramming human somatic cells.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Benzamidas/farmacologia , Dioxóis/farmacologia , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Fibroblastos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , MAP Quinase Quinase 1/antagonistas & inibidores , Pirimidinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Tiazóis/farmacologia , Transdução Genética
12.
Methods Mol Biol ; 2303: 319-327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626390

RESUMO

Glycosaminoglycans (GAGs) are important sulfated carbohydrates prevalently found in the extracellular matrix that serve many biological functions. The synthesis of structurally diverse but defined GAGs is extremely challenging as one has to account for the various sulfation patterns. Described is the automated synthesis of chondroitin sulfate hexasaccharides on a solid support equipped with a photolabile linker. The linker cleavage from the resin is performed in a continuous-flow photoreactor under chemically mild conditions. This approach serves as a general scheme to access oligosaccharides of all GAG families.


Assuntos
Oligossacarídeos/química , Sulfatos de Condroitina , Glicosaminoglicanos , Humanos , Sulfatos
13.
Angew Chem Int Ed Engl ; 50(42): 9961-4, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21898727

RESUMO

Building blocks: a new, general synthetic strategy, which allows the construction of branched glycosylphosphatidylinositols (GPIs), enables the synthesis of parasitic glycolipid 1 from Toxoplasma gondii. In addition, the structure is further confirmed by recognition of monoclonal antibodies.


Assuntos
Antígenos/química , Glicosilfosfatidilinositóis/síntese química , Toxoplasma/química , Configuração de Carboidratos , Glicosilfosfatidilinositóis/química , Dados de Sequência Molecular , Peso Molecular
15.
Sci Transl Med ; 9(380)2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28275152

RESUMO

Glycoconjugate vaccines based on capsular polysaccharides (CPSs) of pathogenic bacteria such as Streptococcus pneumoniae successfully protect from disease but suffer from incomplete coverage, are troublesome to manufacture from isolated CPSs, and lack efficacy against certain serotypes. Defined, synthetic oligosaccharides are an attractive alternative to isolated CPSs but require the identification of immunogenic and protective oligosaccharide antigens. We describe a medicinal chemistry strategy based on a combination of automated glycan assembly (AGA), glycan microarray-based monoclonal antibody (mAb) reverse engineering, and immunological evaluation in vivo to uncover a protective glycan epitope (glycotope) for S. pneumoniae serotype 8 (ST8). All four tetrasaccharide frameshifts of ST8 CPS were prepared by AGA and used in glycan microarray experiments to identify the glycotopes recognized by antibodies against ST8. One tetrasaccharide frameshift that was preferentially recognized by a protective, CPS-directed mAb was conjugated to the carrier protein CRM197. Immunization of mice with this semisynthetic glycoconjugate followed by generation and characterization of a protective mAb identified protective and nonprotective glycotopes. Immunization of rabbits with semisynthetic ST8 glycoconjugates containing protective glycotopes induced an antibacterial immune response. Coformulation of ST8 glycoconjugates with the marketed 13-valent glycoconjugate vaccine Prevnar 13 yielded a potent 14-valent S. pneumoniae vaccine. Our strategy presents a facile approach to develop efficient semisynthetic glycoconjugate vaccines.


Assuntos
Glicoconjugados/imunologia , Vacinas Pneumocócicas/imunologia , Sorogrupo , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas/imunologia , Animais , Antibacterianos/farmacologia , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Cápsulas Bacterianas/metabolismo , Feminino , Mutação da Fase de Leitura/genética , Glicoconjugados/química , Glicômica , Células HL-60 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo , Coelhos
16.
Nat Commun ; 7: 12482, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580973

RESUMO

Automated glycan assembly (AGA) has advanced from a concept to a commercial technology that rapidly provides access to diverse oligosaccharide chains as long as 30-mers. To date, AGA was mainly employed to incorporate trans-glycosidic linkages, where C2 participating protecting groups ensure stereoselective couplings. Stereocontrol during the installation of cis-glycosidic linkages cannot rely on C2-participation and anomeric mixtures are typically formed. Here, we demonstrate that oligosaccharides containing multiple cis-glycosidic linkages can be prepared efficiently by AGA using monosaccharide building blocks equipped with remote participating protecting groups. The concept is illustrated by the automated syntheses of biologically relevant oligosaccharides bearing various cis-galactosidic and cis-glucosidic linkages. This work provides further proof that AGA facilitates the synthesis of complex oligosaccharides with multiple cis-linkages and other biologically important oligosaccharides.


Assuntos
Galactosídeos/química , Glucosídeos/química , Monossacarídeos/química , Oligossacarídeos/síntese química , Automação Laboratorial/métodos , Glicosilação , Estereoisomerismo
17.
Chem Commun (Camb) ; (24): 3062-4, 2005 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-15959585

RESUMO

Lewis acid-catalyzed ring expansion reaction of chiral aziridine-2-carboxylate proceeds regio- and stereospecifically to yield enantiomerically pure 4-functionalized imidazolidin-2-ones in high yields.


Assuntos
Aziridinas/química , Ácidos Carboxílicos/química , Imidazolidinas/síntese química , Catálise , Estereoisomerismo
18.
Methods Mol Biol ; 1229: 3-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25325938

RESUMO

Glycosaminoglycans (GAGs) are important sulfated carbohydrates prevalently found in the extracellular matrix that serve many biological functions. The synthesis of structurally diverse but defined GAGs is extremely challenging as one has to account for the various sulfation patterns. Described is the automated synthesis of two chondroitin sulfate hexasaccharides. The oligosaccharides are prepared on a solid support that is equipped with a photolabile linker. The linker cleavage from the resin is performed in a continuous-flow photoreactor under chemically mild conditions. The described approach will serve as a general scheme to systematically access oligosaccharides of all GAG families.


Assuntos
Bioquímica/métodos , Sulfatos de Condroitina/síntese química , Oligossacarídeos/síntese química , Acetilação , Automação , Sulfatos de Condroitina/química , Cromatografia Líquida de Alta Pressão , Glicosilação , Oligossacarídeos/química
20.
Org Lett ; 17(17): 4344-7, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26295743

RESUMO

Arabinogalactan proteins are heavily glycosylated proteoglycans in plants. Their glycan portion consists of type-II arabinogalactan polysaccharides whose heterogeneity hampers the assignment of the arabinogalactan protein function. Synthetic chemistry is key to the procurement of molecular probes for plant biologists. Described is the automated glycan assembly of 14 oligosaccharides from four monosaccharide building blocks. These linear and branched glycans represent key structural features of natural type-II arabinogalactans and will serve as tools for arabinogalactan biology.


Assuntos
Mucoproteínas/química , Oligossacarídeos/síntese química , Polissacarídeos/síntese química , Proteínas/metabolismo , Galactanos/química , Glicosilação , Estrutura Molecular , Oligossacarídeos/química , Proteínas de Plantas/química , Polissacarídeos/química , Proteoglicanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA