Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Appl Environ Microbiol ; 89(2): e0203622, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744963

RESUMO

The oomycete Pythium oligandrum is a soil-inhabiting parasite and predator of both fungi and oomycetes, and uses hydrolytic enzymes extensively to penetrate and hydrolyze its host or prey. Other mechanisms have been studied less, and we investigated the contribution of P. oligandrum-produced volatile organic compounds (VOCs) to parasitism. The growth-inhibiting activity of P. oligandrum VOCs was tested on Pythium myriotylum-a host or prey of P. oligandrum-coupled with electron microscopy, and biochemical and transcriptomic analyses. The P. oligandrum-produced VOCs reduced P. myriotylum growth by 80% and zoospore levels by 60%. Gas chromatography-mass spectrometry (GC-MS) identified 23 VOCs, and methyl heptenone, d-limonene, 2-undecanone, and 1-octanal were potent inhibitors of P. myriotylum growth and led to increased production of reactive oxygen species at a concentration that did not inhibit P. oligandrum growth. Exposure to the P. oligandrum VOCs led to shrinkage of P. myriotylum hyphae and lysis of the cellular membranes and organelles. Transcriptomics of P. myriotylum exposed to the P. oligandrum VOCs at increasing levels of growth inhibition initially showed a strong upregulation of putative detoxification-related genes that was not maintained later. The inhibition of P. myriotylum growth continued immediately after the exposure to the VOCs was discontinued and led to the reduced infection of its plant hosts. The VOCs produced by P. oligandrum could be another factor alongside hydrolytic enzymes contributing to its ecological role as a microbial parasite in particular ecological niches such as in soil, and may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations. IMPORTANCE Microbe-microbe interactions in nature are multifaceted, with multiple mechanisms of action, and are crucial to how plants interact with microbes. Volatile organic compounds (VOCs) have diverse functions, including contributing to parasitism in ecological interactions and potential applications in biocontrol. The microbial parasite P. oligandrum is well known for using hydrolytic enzymes as part of its parasitism. We found that P. oligandrum VOCs reduced the growth of, and caused major damage to, the hyphae of P. myriotylum (a host or prey of P. oligandrum). Transcriptomic analyses of P. myriotylum exposed to the VOCs revealed the upregulation of genes potentially involved in an attempt to detoxify the VOCs. The inhibitory effects of the VOCs had a knock-on effect by reducing the virulence of P. myriotylum toward its plant hosts. The P. oligandrum VOCs could contribute to its ecological role as a microbial parasite. The VOCs analyzed here may also contribute to the biocontrol of diseases using P. oligandrum commercial preparations.


Assuntos
Pythium , Compostos Orgânicos Voláteis , Pythium/genética , Compostos Orgânicos Voláteis/farmacologia , Fungos , Interações Microbianas , Solo
2.
Plant Dis ; 107(5): 1510-1521, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36324205

RESUMO

Postharvest losses of grape berries caused by the pathogenic fungi Botrytis cinerea and Alternaria alternata have been widely reported, and nitric oxide (NO) as a plant signaling molecule to control postharvest diseases has recently become an active research topic. This study aimed to investigate the regulatory effect of NO on the interaction between grape berries and fungi. During interactions between grape berries and pathogenic fungi, treatment with 10 mM sodium nitroprusside (SNP, an NO donor) delayed the decline of the physiological quality of the grape berries and had positive effects on the weight loss rate, firmness, and respiration intensity. SNP treatment increased the activities of superoxide dismutase (SOD) and polyphenol oxidase (PPO) and inhibited the activities of peroxidase (POD) and catalase (CAT) of grape berries during the resistance to fungal pathogen infection. In addition, the increase in browning degree and the accumulation of hydrogen peroxide were inhibited by SNP treatment. In the phenylpropane metabolic pathway, the activities of phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumaric acid coenzyme A ligase (4CL) were increased during the activation of grape berries during the resistance to pathogen infection by SNP, and the intermediate metabolites lignin, flavonoids, and total phenols were accumulated. In addition, SNP treatment had a regulatory effect on the gene expression levels of SOD, POD, PPO, PAL, and 4CL. These results suggested that SNP treatment was effective for the preservation and disease reduction of grape berries.


Assuntos
Vitis , Vitis/microbiologia , Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Frutas/microbiologia , Alternaria , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia
3.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769262

RESUMO

Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is a devastating soilborne disease in tomatoes. Magnesium oxide nanoparticles (MgO NPs) induce strong immunity against Fusarium wilt in tomatoes. However, the mechanisms underlying this immunity remain poorly understood. Comparative transcriptome analysis and microscopy of tomato roots were performed to determine the mechanism of MgO NP-induced immunity against FOL. Eight transcriptomes were prepared from tomato roots treated under eight different conditions. Differentially expressed genes were compared among the transcriptomes. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that in tomato roots pretreated with MgO NPs, Rcr3 encoding apoplastic protease and RbohD encoding NADPH oxidase were upregulated when challenge-inoculated with FOL. The gene encoding glycine-rich protein 4 (SlGRP4) was chosen for further analysis. SlGRP4 was rapidly transcribed in roots pretreated with MgO NPs and inoculated with FOL. Immunomicroscopy analysis showed that SlGRP4 accumulated in the cell walls of epidermal and vascular vessel cells of roots pretreated with MgO NPs, but upon FOL inoculation, SlGRP4 further accumulated in the cell walls of cortical tissues within 48 h. The results provide new insights into the probable mechanisms of MgO NP-induced tomato immunity against Fusarium wilt.


Assuntos
Fusarium , Nanopartículas , Solanum lycopersicum , Solanum lycopersicum/genética , Fusarium/genética , Óxido de Magnésio , Doenças das Plantas/genética
4.
BMC Plant Biol ; 21(1): 279, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147088

RESUMO

BACKGROUND: 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is a key enzyme in the mevalonate (MVA) pathway, which regulates the metabolism of terpenoids in the cytoplasm and determines the type and content of downstream terpenoid metabolites. RESULTS: Results showed that grapevine HMGR family has three members, such as VvHMGR1, VvHMGR2, and VvHMGR3. The expression of VvHMGRs in 'Kyoho' has tissue specificity, for example, VvHMGR1 keeps a higher expression, VvHMGR2 is the lowest, and VvHMGR3 gradually decreases as the fruit development. VvHMGR3 is closely related to CsHMGR1 and GmHMGR9 and has collinearity with CsHMGR2 and GmHMGR4. By the prediction of interaction protein, it can interact with HMG-CoA synthase, MVA kinase, FPP/GGPP synthase, diphosphate mevalonate decarboxylase, and participates in the synthesis and metabolism of terpenoids. VvHMGR3 have similar trends in expression with some of the genes of carotenoid biosynthesis and MEP pathways. VvHMGR3 responds to various environmental and phytohormone stimuli, especially salt stress and ultraviolet (UV) treatment. The expression level of VvHMGRs is diverse in grapes of different colors and aroma. VvHMGRs are significantly higher in yellow varieties than that in red varieties, whereas rose-scented varieties showed significantly higher expression than that of strawberry aroma. The expression level is highest in yellow rose-scented varieties, and the lowest in red strawberry scent varieties, especially 'Summer Black' and 'Fujiminori'. CONCLUSION: This study confirms the important role of VvHMGR3 in the process of grape fruit coloring and aroma formation, and provided a new idea to explain the loss of grape aroma and poor coloring during production. There may be an additive effect between color and aroma in the HMGR expression aspect.


Assuntos
Genes de Plantas , Hidroximetilglutaril-CoA Redutases/genética , Vitis/enzimologia , Vitis/genética , Antocianinas/metabolismo , Evolução Molecular , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Perfilação da Expressão Gênica , Variação Genética , Genótipo , Família Multigênica , Pressão Osmótica , Reguladores de Crescimento de Plantas/fisiologia , Terpenos/metabolismo , Vitis/crescimento & desenvolvimento
5.
Plant Biotechnol J ; 19(6): 1216-1239, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33440072

RESUMO

In grape, MYBA1 and MYBA2 at the colour locus are the major genetic determinants of grape skin colour, and the mutation of two functional genes (VvMYBA1 and VvMYBA2) from these loci leads to white skin colour. This study aimed to elucidate the regulation of grape berry coloration by isolating and characterizing VvMYBA2w and VvMYBA2r alleles. The overexpression of VvMYBA2r up-regulated the expression of anthocyanin biosynthetic genes and resulted in higher anthocyanin accumulation in transgenic tobacco than wild-type (WT) plants, especially in flowers. However, the ectopic expression of VvMYBA2w inactivated the expression of anthocyanin biosynthetic genes and could not cause obvious phenotypic modulation in transgenic tobacco. Unlike in VvMYBA2r, CA dinucleotide deletion shortened the C-terminal transactivation region and disrupted the transcriptional activation activity of VvMYBA2w. The results indicated that VvMYBA2r positively regulated anthocyanin biosynthesis by forming the VvMYBA2r-VvMYCA1-VvWDR1 complex, and VvWDR1 enhanced anthocyanin accumulation by interacting with the VvMYBA2r-VvMYCA1 complex; however, R44 L substitution abolished the interaction of VvMYBA2w with VvMYCA1. Meanwhile, both R44 L substitution and CA dinucleotide deletion seriously affected the efficacy of VvMYBA2w to regulate anthocyanin biosynthesis, and the two non-synonymous mutations were additive in their effects. Investigation of the colour density and MYB haplotypes of 213 grape germplasms revealed that dark-skinned varieties tended to contain HapC-N and HapE2, whereas red-skinned varieties contained high frequencies of HapB and HapC-Rs. Regarding ploidy, the higher the number of functional alleles present in a variety, the darker was the skin colour. In summary, this study provides insight into the roles of VvMYBA2r and VvMYBA2w alleles and lays the foundation for the molecular breeding of grape varieties with different skin colour.


Assuntos
Vitis , Alelos , Antocianinas , Embaralhamento de DNA , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentação da Pele , Vitis/genética , Vitis/metabolismo
6.
Environ Res ; 200: 111368, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34081974

RESUMO

Organophosphorus insecticides (OPIs) have low persistence and are easily biodegradable in nature. The United States and India are the major countries producing OPIs of about 25% and 17% of the world, respectively. OPIs commonly used for agricultural practices occupy a major share in the global market, which leads to the increasing contamination of OPIs residues in various food chains. To overcome this issue, an enzymatic degradation method has been approved by several environmental toxic, and controlling agencies, including United States Environmental Protection Agency (USEPA). Different catalytic enzymes have been isolated and identified from various microbial sources to neutralize the toxic pesticides and/or insecticides. In this review, we have gathered information on OPIs biotransformation and their residual toxicity in the environment. Particularly, it focuses on OPIs degrading enzymes such as chlorpyrifos hydrolase, diisopropylfluorophosphatase, organophosphate acid anhydrolase, organophosphate hydrolases, and phosphotriesterases like lactonasesspecific activity either P-O link group type or P-S link group of pesticides. To summarize, the catalytic degradation of organophosphorus insecticides is not only profitable but also environmentally friendly. Hence, the enzymatic catalyst is an ultimate and super bio-weapon to mitigate or decontaminate various OPIs residues in both terrestrial and aqueous environments.


Assuntos
Clorpirifos , Inseticidas , Praguicidas , Biodegradação Ambiental , Biotransformação , Compostos Organofosforados/toxicidade
7.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205396

RESUMO

Members of the lectin receptor-like kinase (LecRLKs) family play a vital role in innate plant immunity. Few members of the LecRLKs family have been characterized in rice and Arabidopsis, respectively. However, little literature is available about LecRLKs and their role against fungal infection in cucumber. In this study, 60 putative cucumber LecRLK (CsLecRLK) proteins were identified using genome-wide analysis and further characterized into L-type LecRLKs (24) and G-type LecRLKs (36) based on domain composition and phylogenetic analysis. These proteins were allocated to seven cucumber chromosomes and found to be involved in the expansion of the CsLecRLK gene family. Subcellular localization of CsaLecRLK9 and CsaLecRLK12 showed green fluorescence signals in the plasma membrane of leaves. The transcriptional profiling of CsLecRLK genes showed that L-type LecRLKs exhibited functional redundancy as compared to G-type LecRLKs. The qRT-PCR results indicated that both L- and G-type LecRLKs showed significant response against plant growth-promoting fungi (PGPF-Trichoderma harzianum Rifai), powdery mildew pathogen (PPM-Golovinomyces orontii (Castagne) V.P. Heluta), and combined (PGPF+PPM) treatments. The findings of this study contribute to a better understanding of the role of cucumber CsLecRLK genes in response to PGPF, PPM, and PGPF+PPM treatments and lay the basis for the characterization of this important functional gene family.


Assuntos
Cucumis sativus/enzimologia , Erysiphe/imunologia , Imunidade Vegetal , Proteínas Quinases/genética , Estresse Fisiológico , Cromossomos de Plantas , Cucumis sativus/genética , Cucumis sativus/imunologia , Perfilação da Expressão Gênica , Genes de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo
8.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829976

RESUMO

This study elaborates inter-kingdom signaling mechanisms, presenting a sustainable and eco-friendly approach to combat biotic as well as abiotic stress in wheat. Fusarium graminearum is a devastating pathogen causing head and seedling blight in wheat, leading to huge yield and economic losses. Psychrophilic Bacillus atrophaeus strain TS1 was found as a potential biocontrol agent for suppression of F. graminearum under low temperature by carrying out extensive biochemical and molecular studies in comparison with a temperate biocontrol model strain Bacillus amyloliquefaciens FZB42 at 15 and 25 °C. TS1 was able to produce hydrolytic extracellular enzymes as well as antimicrobial lipopeptides, i.e., surfactin, bacillomycin, and fengycin, efficiently at low temperatures. The Bacillus strain-induced oxidative cellular damage, ultrastructural deformities, and novel genetic dysregulations in the fungal pathogen as the bacterial treatment at low temperature were able to downregulate the expression of newly predicted novel fungal genes potentially belonging to necrosis inducing protein families (fgHCE and fgNPP1). The wheat pot experiments conducted at 15 and 25 °C revealed the potential of TS1 to elicit sudden induction of plant defense, namely, H2O2 and callose enhanced activity of plant defense-related enzymes and induced over-expression of defense-related genes which accumulatively lead to the suppression of F. graminearum and decreased diseased leaf area.


Assuntos
Bacillus/genética , Fusarium/genética , Controle Biológico de Vetores , Triticum/microbiologia , Bacillus/crescimento & desenvolvimento , Bacillus/patogenicidade , Resistência à Doença/genética , Fusarium/patogenicidade , Glucanos/genética , Estresse Oxidativo/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Triticum/genética , Triticum/crescimento & desenvolvimento
9.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570751

RESUMO

The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase that plays important roles in brassinosteroid signaling, abiotic stress responses, cell division, and elongation, etc. In this study, we characterized seven grape GSK3 genes, showing high similarities with homologs from other species including Arabidopsis, white pear, apple, orange, and peach. Gene chip microarray data derived from an online database revealed very diverse developmental and tissue-specific expression patterns of VvSKs. VvSK3 and VvSK7 showed much higher expression levels in almost every tissue compared with other members. VvSK7 was highly enriched in young tissues like berries before the veraison stage, young leaves and green stems, etc., but immediately downregulated after these tissues entered maturation or senescence phases. Prediction of cis-elements in VvSK promoters indicated that VvSKs might be sensitive to light stimulation, which is further confirmed by the qPCR data. Constitutive overexpression of VvSK7 in Arabidopsis leads to dwarf plants that resembles BR-deficient mutants. The photosynthetic rate was significantly reduced in these plants, even though they accumulated more chlorophyll in leaves. Transient overexpression of VvSKs in tomatoes delayed the fruit ripening process, consistent with the observation in grapevine which blocks VvSKs by EBR- or BIKININ-promoted berry expansion and soluble solids accumulation. Data presented in the current study may serve as a theoretical basis for the future application of BRs or related compounds in quality grape production.


Assuntos
Quinase 3 da Glicogênio Sintase/genética , Proteínas de Plantas/genética , Vitis/fisiologia , Clorofila/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/metabolismo , Especificidade de Órgãos , Fotossíntese , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Vitis/genética
10.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261768

RESUMO

In pectin regulation, polygalacturonases (PGs) and pectin methylesterases (PMEs) are critical components in the transformation, disassembly network, and remodeling of plant primary cell walls. In the current study, we identified 36 PG and 47 PME genes using the available genomic resources of grapevine. Herein, we provide a comprehensive overview of PGs and PMEs, including phylogenetic and collinearity relationships, motif and gene structure compositions, gene duplications, principal component analysis, and expression profiling during developmental stages. Phylogenetic analysis of PGs and PMEs revealed similar domain composition patterns with Arabidopsis. The collinearity analysis showed high conservation and gene duplications with purifying selection. The type of duplications also varied in terms of gene numbers in PGs (10 dispersed, 1 proximal, 12 tandem, and 13 segmental, respectively) and PMEs (23 dispersed, 1 proximal, 16 tandem, and 7 segmental, respectively). The tissue-specific response of PG and PME genes based on the reported transcriptomic data exhibited diverged expression patterns in various organs during different developmental stages. Among PGs, VvPG8, VvPG10, VvPG13, VvPG17, VvPG18, VvPG19, VvPG20, VvPG22, and VvPG23 showed tissue- or organ-specific expression in majority of the tissues during development. Similarly, in PMEs, VvPME3, VvPME4, VvPME5, VvPME6, VvPME19, VvPME21, VvPME23, VvPME29, VvPME31, and VvPME32 suggested high tissue-specific response. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomics (KEGG) enrichment, and cis-elements prediction analysis also suggested the putative functions of PGs and PMEs in plant development, such as pectin and carbohydrate metabolism, and stress activities. Moreover, qRT-PCR validation of 32 PG and PME genes revealed their role in various organs of grapevines (i.e., root, stem, tendril, inflorescence, flesh, skins, and leaves). Therefore, these findings will lead to novel insights and encourage cutting-edge research on functional characterization of PGs and PMEs in fruit crop species.


Assuntos
Hidrolases de Éster Carboxílico/genética , Proteínas de Plantas/genética , Poligalacturonase/genética , Transcriptoma , Vitis/genética , Hidrolases de Éster Carboxílico/metabolismo , Duplicação Gênica , Proteínas de Plantas/metabolismo , Poligalacturonase/metabolismo , Vitis/metabolismo
11.
Mol Genet Genomics ; 293(6): 1333-1354, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29943289

RESUMO

SPL is a plant-specific transcription factor family. Many researchers reported that SPL members targeted by miR156s could play crucial roles in the modulation of plant growth and development. Although there are similar reports on grapes, till now little is known about grape berry development and ripening. To gain more insight into how grape miR156s (Vv-miR156s) modulated the above given processes of grape berries by mediating their target gene Vv-SPLs, here we identified the precise sequences of Vv-miR156s in 'Giant Rose' grape berries, predicted their potential targets, and revealed that the matching degree of various Vv-miR156: Vv-SPL pairs exhibited some discrepancy, implying the divergence of their interaction. Subsequently, we also discovered similar motifs such as ABRE, CGTCA and ERE, which are more specific to berry development and ripening, within the promoters of both Vv-MIR156s and Vv-SPLs. With berry development and ripening, meanwhile, Vv-miR156a, b/c/d, e and f/g/i exhibited an overall increasing expression trend, while their targets showed opposite trends at the corresponding stages. Additionally, exogenous ABA and NAA application promoted or curbed the expression of Vv-miR156s to some extent, before grape berry ripening stage. The cleavage products, sites and frequencies of Vv-miR156a, b/c/d, e, f/g/i and their respective targets (Vv-SPL2, 9, 10, 16) during grape berry development and ripening process were validated by our developed PPM-RACE and modified RLM-RACE together with qRT-PCR, which demonstrated that Vv-miR156s can be involved in the modulation of grape berry development and ripening process by mediating the expression of Vv-SPL2, 9, 10, 16. Our findings lay an important foundation for further recognizing their functions in grape berries, and enrich the knowledge of the regulatory mechanism of miRNA-mediated grape berry development and ripening.


Assuntos
MicroRNAs/genética , Vitis/crescimento & desenvolvimento , Vitis/genética , Sequência de Bases , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Regiões Promotoras Genéticas
12.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545146

RESUMO

Salinity is ubiquitous abiotic stress factor limiting viticulture productivity worldwide. However, the grapevine is vulnerable to salt stress, which severely affects growth and development of the vine. Hence, it is crucial to delve into the salt resistance mechanism and screen out salt-resistance prediction marker genes; we implicated RNA-sequence (RNA-seq) technology to compare the grapevine transcriptome profile to salt stress. Results showed 2472 differentially-expressed genes (DEGs) in total in salt-responsive grapevine leaves, including 1067 up-regulated and 1405 down-regulated DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations suggested that many DEGs were involved in various defense-related biological pathways, including ROS scavenging, ion transportation, heat shock proteins (HSPs), pathogenesis-related proteins (PRs) and hormone signaling. Furthermore, many DEGs were encoded transcription factors (TFs) and essential regulatory proteins involved in signal transduction by regulating the salt resistance-related genes in grapevine. The antioxidant enzyme analysis showed that salt stress significantly affected the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and glutathione S-transferase (GST) activities in grapevine leaves. Moreover, the uptake and distribution of sodium (Na⁺), potassium (K⁺) and chlorine (Cl-) in source and sink tissues of grapevine was significantly affected by salt stress. Finally, the qRT-PCR analysis of DE validated the data and findings were significantly consistent with RNA-seq data, which further assisted in the selection of salt stress-responsive candidate genes in grapevine. This study contributes in new perspicacity into the underlying molecular mechanism of grapevine salt stress-tolerance at the transcriptome level and explore new approaches to applying the gene information in genetic engineering and breeding purposes.


Assuntos
Perfilação da Expressão Gênica , Estresse Salino/genética , Análise de Sequência de RNA , Vitis/genética , Vitis/fisiologia , Sequestradores de Radicais Livres/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Proteínas de Choque Térmico/metabolismo , Transporte de Íons/efeitos dos fármacos , Anotação de Sequência Molecular , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Estresse Salino/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Vitis/efeitos dos fármacos
13.
Int J Biol Macromol ; 239: 124164, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011744

RESUMO

In this study, an efficient ultrasonic-assisted extraction method was used for the extraction and optimization of four wine grape polysaccharides. A three-level, three-factor Box Behnken Design combined with the response surface approach was used to optimize the extraction conditions. Their physicochemical properties, molecular structure, antioxidant activity, immunomodulatory activity and hepatoprotective effects were examined and compared. These findings suggest that the four wine grape polysaccharides share similar basic structural features and monosaccharide composition. Furthermore, four wine grape polysaccharides exhibited antioxidant and immunomodulatory activities in a concentration-dependent manner. Moldova (MD) polysaccharide displayed better antioxidant activity and immunomodulatory ability. Furthermore, MD polysaccharide has a significant therapeutic effect on CCl4-induced rat liver injury by improving the antioxidant defense system and inhibiting oxidative stress, indicating that MD has a hepatoprotective effect. Taken together, the MD wine grape polysaccharide may have potential applications in prevention of liver disease in the functional food and pharmaceutical industries.


Assuntos
Vitis , Vinho , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Estresse Oxidativo , Polissacarídeos/farmacologia , Polissacarídeos/química
14.
Front Plant Sci ; 13: 899177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812950

RESUMO

Cultivated peanut (Arachis hypogaea L.), a cosmopolitan oil crop, is susceptible to a variety of pathogens, especially Aspergillus flavus L., which not only vastly reduce the quality of peanut products but also seriously threaten food safety for the contamination of aflatoxin. However, the key genes related to resistance to Aspergillus flavus L. in peanuts remain unclear. This study identifies hub genes positively associated with resistance to A. flavus in two genotypes by comparative transcriptome and weighted gene co-expression network analysis (WGCNA) method. Compared with susceptible genotype (Zhonghua 12, S), the rapid response to A. flavus and quick preparation for the translation of resistance-related genes in the resistant genotype (J-11, R) may be the drivers of its high resistance. WGCNA analysis revealed that 18 genes encoding pathogenesis-related proteins (PR10), 1-aminocyclopropane-1-carboxylate oxidase (ACO1), MAPK kinase, serine/threonine kinase (STK), pattern recognition receptors (PRRs), cytochrome P450, SNARE protein SYP121, pectinesterase, phosphatidylinositol transfer protein, and pentatricopeptide repeat (PPR) protein play major and active roles in peanut resistance to A. flavus. Collectively, this study provides new insight into resistance to A. flavus by employing WGCNA, and the identification of hub resistance-responsive genes may contribute to the development of resistant cultivars by molecular-assisted breeding.

15.
Plants (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34451623

RESUMO

Fertilization, a fundamental aspect of a plant's life, has been of great concern for agricultural specialists to minimize the yield gap between actual and potential yield. Around the globe, fertilizers with different NPK ratios are being used to attain a better yield of grape. To find the suitable commercially available fertilizer for quality grape production, a 2 years (2017-2018) study was conducted for the evaluation of 10 fertilizers with different NPK ratios. Commercial fertilizers included were Zhanlan (16:16:16), Garsoni (15:15:15), Acron (16:16:16), Norway (21:7:12), Peters 1 (30:10:10), Nutrivant (14:14:30), Peters 2 (20:20:20), UMAX (15:15:15), G2 (20:20:20), and Yara (15:15:15). The fertilizer application rate was 20 g plant-1, and each was applied at L-29, L-33, and L-36 phenological stages. Chlorophylls, carotenoids, macro/micronutrients in leaf, and anthocyanin derivatives in grape peel were evaluated. Expression levels of 24 genes, including nitrogen, phosphorous, potassium, and anthocyanin pathways in leaf, peel, and pulp were validated by qPCR at L-29, L-33, and L-36 stages. Results indicated that Norway (21:7:12) and Peters 1 (30:10:10) increased carotenoids, chlorophylls, and anthocyanins in leaves, while Zhanlan (16:16:16) improved fruit biochemical attributes, and anthocyanin (cyanidin, delphinidin, petunidin, malvidin, peonidin, and pelargonidin contents). However, a better grape yield was obtained by the application of Peters 1 (30:10:10). Potassium pathway genes were upregulated by Nutrivant (14:14:30), phosphorous pathway genes by Peters 2 (20:20:20), and nitrogen pathway genes by Peters 1 (30:10:10), while Nutrivant (14:14:30) upregulated anthocyanin pathway genes and simultaneously enhanced anthocyanin biosynthesis in berry peels. Results of two years' study concluded that Peters 1 (30:10:10) was proved better to increase yield, while Zhanlan (14:14:30) was superior in improving anthocyanin biosynthesis.

16.
Front Genet ; 12: 750761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721538

RESUMO

APETALA2/ethylene response element-binding factor (AP2/ERF) transcription factors (TFs) have been found to regulate plant growth and development and response to various abiotic stresses. However, detailed information of AP2/ERF genes in peanut against drought has not yet been performed. Herein, 185 AP2/ERF TF members were identified from the cultivated peanut (A. hypogaea cv. Tifrunner) genome, clustered into five subfamilies: AP2 (APETALA2), ERF (ethylene-responsive-element-binding), DREB (dehydration-responsive-element-binding), RAV (related to ABI3/VP), and Soloist (few unclassified factors)). Subsequently, the phylogenetic relationship, intron-exon structure, and chromosomal location of AhAP2/ERF were further characterized. All of these AhAP2/ERF genes were distributed unevenly across the 20 chromosomes, and 14 tandem and 85 segmental duplicated gene pairs were identified which originated from ancient duplication events. Gene evolution analysis showed that A. hypogaea cv. Tifrunner were separated 64.07 and 66.44 Mya from Medicago truncatula L. and Glycine max L., respectively. Promoter analysis discovered many cis-acting elements related to light, hormones, tissues, and stress responsiveness process. The protein interaction network predicted the exitance of functional interaction among families or subgroups. Expression profiles showed that genes from AP2, ERF, and dehydration-responsive-element-binding subfamilies were significantly upregulated under drought stress conditions. Our study laid a foundation and provided a panel of candidate AP2/ERF TFs for further functional validation to uplift breeding programs of drought-resistant peanut cultivars.

17.
Int J Biol Macromol ; 193(Pt B): 1226-1236, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743029

RESUMO

The present study emphasizes improving the overall yield, productivity and quality of xanthan by Xanthomonas campestris using different carbon sources via optimizing the fermentation media and kinetic modelling work. After optimization, six carbon sources and one nitrogen source were selected for xanthan production in 5 L bioreactor. Kinetic modelling was applied to assess the experimental fermentation data and to check its influence on scale-up production. In this work, xanthan production reached 40.65 g/L with a growth-associated rate constant (α) of 2.831, and highest specific growth rate (µm) of 0.37/h while using maltose as the sole carbon source. Furthermore, rheological properties were determined, and Herschel-Bulkley model was employed to assess the experimental data. Interestingly, xanthan obtained from sucrose and glucose showed the highest yield stress (τ0) of 12.50 ± 0.31 and 7.17 ± 0.21. Moreover, the highest xanthan molecular weight of 3.53 × 107 and 3.25 × 107 g/mol were also found with sucrose and glucose. At last, the proposed mechanism of sugar metabolism and xanthan biosynthesis pathway were described. Conclusively, maltose appeared as the best carbon source for maximum xanthan production: while sucrose and glucose gave qualitatively best results. In short, this systematically modelled approach maximizes the potential output and provides a solid base for continuous cultivation of xanthan at large-scale production.


Assuntos
Maltose , Polissacarídeos Bacterianos/biossíntese , Xanthomonas campestris/crescimento & desenvolvimento , Carbono/metabolismo , Carbono/farmacologia , Maltose/metabolismo , Maltose/farmacologia
18.
Genes (Basel) ; 11(2)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102395

RESUMO

The plant-specific IQ67-domain (IQD) protein family members are downstream targets of calcium sensors, known to regulate plant growth and lateral organ polarity, and basal defense response against environmental cues. No systematic study of IQD gene family has been performed on grapevine. The public availability of grapevine genome enables us to perform identification, phylogeny, chromosomal orientation, and gene structure analysis of the IQD genes in grapevine. We identified 49 VvIQD genes (VvIQD1-VvIQD49) and further classified them into eight subgroups based on phylogenetic relationships. The 49 VvIQD genes were assigned to 19 different chromosomal positions. The collinear relationship between grapevine and Arabidopsis IQDs (VvIQD and AtIQD), and within grapevine VvIQDs, was highly conserved. In addition, most of duplicated gene pairs showed Ka/Ks ratio less than 1.00, indicating purifying selection within these gene pairs, implying functional discrepancy after duplication. Transcription profiling of VvIQD genes shed light on their specific role in grapevine tissue and organ development. The qRT-PCR validation of the 49 VvIQD genes in grape berry tissue from cultivars with distinct berry shape during developmental phases suggested candidate genes involved in the shape of grape berries. The subcellular prediction of VvIQD22, VvIQD23, VvIQD38, and VvIQD49 genes validated their localization in the nucleus and plasma membrane. The VvIQD49 protein interaction with VvCaM2 was also verified by bimolecular fluorescence complementation (BiFC) analysis in the plasma membrane. Our findings will be valuable for the functional genomic studies for desirable shape development of grape berries.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Vitis/genética , Sequência de Aminoácidos/genética , Calmodulina/metabolismo , Cromossomos de Plantas/genética , Sequência Conservada/genética , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/genética , Análise de Sequência/métodos
19.
R Soc Open Sci ; 6(1): 180735, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800341

RESUMO

MicroRNAs (miRNAs) are a class of single-stranded non-coding small RNAs (sRNAs) that are 20-24 nucleotides (nt) in length. Extensive studies have indicated that miRNAs play important roles in plant growth, development and stress responses. With more copper (Cu) and copper containing compounds used as bactericides and fungicides in plants, Cu stress has become one of the serious environmental problems that affect plant growth and development. In order to uncover the hidden response mechanisms of Cu stress, two small RNA libraries were constructed from Cu-treated and water-treated (Control) leaves of 'Summer Black' grapevine. Following high-throughput sequencing and filtering, a total of 158 known and 98 putative novel miRNAs were identified in the two libraries. Among these, 100 known and 47 novel miRNAs were identified as differentially expressed under Cu stress. Subsequently, the expression patterns of nine Cu-responsive miRNAs were validated by quantitative real-time PCR (qRT-PCR). There existed some consistency in expression levels of Cu-responsive miRNAs between high throughput sequencing and qRT-PCR assays. The targets prediction of miRNAs indicates that miRNA may regulate some transcription factors, including AP2, SBP, NAC, MYB and ARF during Cu stress. The target genes for two known and two novel miRNAs showed specific cleavage sites at the 10th and/or 11th nucleotide from the 5'-end of the miRNA corresponding to their miRNA complementary sequences. The findings will lay the foundation for exploring the role of the regulation of miRNAs in response to Cu stress and provide valuable gene information for breeding some Cu-tolerant grapevine cultivars.

20.
Gene ; 702: 27-35, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30890476

RESUMO

The protein phosphatase 2C (PP2C) gene family is one of the momentous and conserved plant-specific gene families, known to participate in cellular processes via reversible protein phosphorylation and regulates signal transduction in eukaryotic organisms. Recently, PP2Cs were identified in Arabidopsis and maize, however, the whole-genome analysis of PP2C in strawberry has not yet been reported. In the current research, we found 62 PP2C-encoding genes in total from the strawberry genome. Further, the phylogenetic analysis categorized FvPP2C genes into twelve subgroups with significant structural conservation based on conserved domain and amino acid sequence. Moreover, we observed a strong signature of purifying selection between the comparison of orthologous gene pairs of strawberry and Arabidopsis. The comparison of RNA-sequence (RNA-seq) data published on various vegetative and reproductive tissues of strawberry plant suggested the significant role of FvPP2C genes in organ development. The qRT-PCR validation of thirty FvPP2C genes indicated their critical tolerance-related role under abiotic stress stimuli in strawberry. Finally, the subcellular localization of FvPP2C51 gene proves that it resides and stimulates its function in the nucleus. Our findings provide an overview of the identification of strawberry FvPP2C gene family and demonstrate their critical role in tissue-specific response and abiotic stress-tolerance, thereby, intimating their significance in the strawberry molecular breeding for the resistant cultivars.


Assuntos
Fragaria/genética , Família Multigênica , Proteína Fosfatase 2C/genética , Cromossomos de Plantas , Evolução Molecular , Fragaria/enzimologia , Genes de Plantas , Genoma de Planta , Filogenia , Regiões Promotoras Genéticas , Proteína Fosfatase 2C/classificação , Proteína Fosfatase 2C/metabolismo , Alinhamento de Sequência , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA